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1 Introduction

Peer effects refer to the influence on an individual’s behavior or decision resulting from the

individual’s interactions with his/her peers. There is a growing body of empirical literature

showing that peer effects exist in a wide range of settings, including education, crime, obesity,

smoking, sports, tax compliance and evasion, and program participation. Various social

interaction models proposed for estimating peer effects allow for a group member’s outcome

to depend on both the outcomes and characteristics of other group members. One main

difficulty for the empirical analysis based on these models is that it may not be possible to

distinguish the correlation of outcomes due to social interactions from the correlation due to

the unobserved group characteristics. Another major obstacle is to distinguish the impact of

peers’ outcomes from the impact of peers’ characteristics, which is known as the reflection

problem (Blume et al., 2015; Manski, 1993; Moffitt, 2001).

Similarities of these models to spatial autoregressive models from spatial econometrics

have been recognized by several studies (Bramoullé et al., 2009, 2020; Lee, 2007; Lee et

al., 2010; Lin, 2010, 2015; Liu and Lee, 2010). This strand of the literature shows that

the spatial autoregressive network models may resolve the reflection problem and allow for

the identification of endogenous effect, contextual effects, and unobserved correlation effect.

In these types of models, the endogenous peer effect and the correlation of unobserved

characteristics of members are specified through spatial autoregressive processes. Following

this strand of the literature, we introduce a new specification that allows a group member’s

outcome to depend on (i) the outcomes of the other members of the group through a matrix

exponential term, (ii) the characteristics of the other members through a spatial lag term, (iii)

the unobserved group heterogeneity, and (iv) the correlation in the unobserved characteristics

of members specified through a matrix exponential term. We will refer to this model as the

matrix exponential social (MES) network model.

We show that the best reply function based on two alternative quadratic utility func-

tions that account for all externality levels generated by group members heterogeneity or all

spillover effects due to social interactions within the group can yield the MES network model.

The MES network model has two important features. First, the endogenous peer effects and

the correlation in the unobserved group characteristics are specified through matrix expo-

nential terms rather than spatial autoregressive processes. It is well known in the literature

that the models specified in terms of matrix exponential terms enjoy several properties in

terms of specification and estimation issues (Chiu et al., 1996; Debarsy et al., 2015; LeSage

and Pace, 2007; LeSage and Pace, 2009; Yang et al., 2021, 2022, 2024). Because the ma-

trix exponential terms are always invertible, our specification has a reduced (or equilibrium)

2



form, and does not require any restrictions on the endogenous and correlated effects. On the

other hand, the estimation of the spatial autoregressive network models requires a restrictive

parameter space for the endogenous and correlated effects. Moreover, the likelihood based

estimation of our network model has the computational advantage because the likelihood

function does not involve any matrix determinant terms that need to be computed in each

iteration during the estimation.

The second feature of our specification is that it allows for potential heteroskedasticity

in the unobserved idiosyncratic characteristics (i.e., the error terms). This means that the

outcomes of group members are allowed to be affected by the unobserved factors in different

ways. Given that group members can differ in many ways, it is natural to expect that the

homoskedasticity assumption generally will not hold in empirical applications. However, the

literature has only considered spatial autoregressive network models under the homoskedas-

ticity assumption (Bramoullé et al., 2020; Lee, 2007; Lee et al., 2010; Lin, 2010, 2015; Liu

and Lee, 2010). Importantly, the estimators suggested in these studies may not be consistent

under heteroskedasticity because these estimators are usually derived from some non-linear

objective functions. As in White (1980), our approach does not require a specific formal

model for the structure of heteroskedasticity and allows for heteroskedasticity-robust infer-

ence.

In this paper, we explore the likelihood based estimation of the MES network model

under both homoskedastic and heteroskedastic error term cases. We consider two estimation

approaches: (i) a transformation approach and (ii) a direct approach. In the transformation

approach, we first eliminate the group fixed effects from the model using a orthogonal trans-

formation based on the decomposition of a projection matrix (Lee and Yu, 2010). In the

homoskedastic case, we show that the quasi maximum likelihood estimator (QMLE) defined

based on the likelihood function of the transformed model attains the usual large sample

properties under some regularity conditions. In the heteroskedastic case, we show that the

QMLE may not be consistent as the expectation of the score functions evaluated at the true

parameter vector may not be zero. Therefore, our estimation strategy dwells on re-centering

the score functions analytically to ensure that their expectations become zero. We then de-

fined a robust M-estimator (RME) as the root of the adjusted score functions and establish

its large sample properties under some assumptions.

The transformation approach is only applicable for models that have row normalized

network matrices. Therefore, we also consider a direct estimation approach that does not

necessitate the row-normalization. In the direct approach, we estimate the group fixed effects

along with the main parameter vector based on the likelihood function of the original model.

In both homoskedastic and heteroskedastic cases, we show how to adjust score functions such
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that their expectations evaluated at the true parameter vector are zero in all cases. Using

suitably adjusted score functions, we propose an M-estimator (ME) in the homoskedastic case

and an RME in the heteroskedastic case. We formally establish consistency and asymptotic

normality of both estimators under some assumptions.

The variance-covariance matrix of all suggested estimators takes a sandwich form. For

the QMLE based on the transformation approach, we suggest using a plug-in estimator and

show how consistent plug-in estimators can be formulated for the third and fourth moments

of the error term. In the case of RME under the transformation approach, and ME and

RME under the direct approach, we show that the expectation of the Hessian matrix can be

consistently estimated by its sample counterpart evaluated at a consistent estimator. For the

variance-covariance matrix of the adjusted score functions, we show that a plug-in estimator

is consistent in the case of the RME based on the transformation approach. However, in

the case of both ME and RME based on the direct approach, the plug-in estimators of the

variance-covariance matrix of the adjusted score functions have asymptotic bias because of

the estimation of the group fixed effects. We suggest analytical bias corrections for both

estimators.

In an extensive Monte Carlo study, we assess the finite sample properties of the proposed

estimators and inference methods under both homoskedastic and heteroskedastic settings.

Our results show that the QMLE based on the transformation approach performs satisfac-

torily under homoskedasticity. However, under heteroskedasticity, while the QMLE shows

satisfactory performance in terms of bias, it can report empirical coverage rates that are lower

than the nominal value. Our results show that the ME based on the direct approach performs

similar to the QMLE. In particular, it exhibits negligible bias but can report empirical cover-

age rates that are lower than the nominal value for some parameters under heteroskedasticity.

Our simulation results also show that the RME based on both transformation and direct ap-

proaches perform satisfactorily under both homoskedastic and heteroskedastic settings.

In an empirical application, we estimate the MES network model using data from the

National Longitudinal Study of Adolescent to Adult Health (Add Health) to investigate

peer effects on academic achievement, participation in recreational activities, and smoking.

The Add Health data sets have been extensively used to explore the role of peer effects on

academic achievement, study effort, school activities, delinquency, and risky behaviors. See,

among others, (Boucher et al., 2024; Calvó-Armengol et al., 2009; Clark and Lohéac, 2007;

Fruehwirth, 2014; Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016; Hsieh and

Lin, 2021; Lee et al., 2014; Lee et al., 2021; Lin, 2010, 2015; Zenou and Patacchini, 2012).

For academic achievement and participation in recreational activities, our results provide

statistical evidence only for the correlation in unobserved factors (the correlation effect),
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while for smoking frequency, our results show statistical evidence for both endogenous and

correlation effects.

Methodologically, our utility functions that yield the MES network model are related

to the conformist and spillover utility functions that underpin the linear-in-means model of

Manski (1993) (Boucher et al., 2024; Brock and Durlauf, 2001; Patacchini and Zenou, 2009).

In the spillover model, an individual always benefits from the average peers’ efforts (peers’

social norm), while in the conformist model, the individual incurs a cost for deviating from

the social norm. Boucher et al. (2024) recently suggest a general utility function that yields

a best reply function that is non-linear in the social norm and encompasses both the spillover

and conformist models as special cases. We suggest two alternative utility functions, where

the first one accounts for all externality levels generated by group members’ heterogeneity

and the second one accounts for all spillover effects due to social interactions within the

group.

Our paper is also closely related to the research on estimation and inference methods for

spatial autoregressive network models. Lee (2007) is the first to consider a spatial autore-

gressive model in a group setting, allowing for endogenous group interactions, contextual

factors, and group-specific fixed effects (i.e., unobserved group heterogeneity). Using the

Add Health data, Lin (2010, 2015) employ the spatial autoregressive network model with a

network matrix based on friendship links to estimate peer effects on adolescent developmen-

tal outcomes. Subsequently, Bramoullé et al. (2009) investigate the identification of network

models and demonstrate that identification depends on the structure of the network matrix.

Lee et al. (2010) and Liu and Lee (2010) extend these models with general network matrices

in the quasi-maximum likelihood and generalized method of moments settings, respectively.

See Bramoullé et al. (2020) for an extensive review of peer effects in networks.

The rest of the paper is organized as follows. In Section 2, we briefly describe a setting

in which the matrix exponential social network model can arise. Section 3 presents the

details of the transformation approach. We establish the large sample properties of the

QMLE under homoskedasticity in Section 3.1 and of the RME under heteroskedasticity in

Section 3.2. In Section 4, we consider the direct approach and define the ME and RME for the

homoskedastic and heteroskedastic cases, respectively. In Section 5, we investigate the finite

sample performance of the proposed estimators through extensive simulations. In Section 6,

we provide our empirical application using the Add Health data. Finally, Section 7 offers

concluding remarks. All technical details are provided in a supplementary web appendix.

5



2 Model specification

In this section, we show how our model specification can arise from a utility maximization

framework. We consider n agents partitioned into R networks such that there are nr agents

in the rth network for r = 1, 2, . . . , R. Let Wr = (wij) be the nr × nr network matrix for

the rth group such that wij,r = 1 if i and j are connected, and zero otherwise. The degree

of the ith agent is given by
∑nr

j=1 wij,r, and we do not require that each agent has the same

degree. In particular, Wr may or may not be directed or row-normalized. Let yir be the

effort level (for an outcome variable) of the ith agent in group r, and πir denote the (ex ante)

heterogeneity of the ith agent. Let Yr = (y1r, y2r, . . . , ynrr)
′

and Πr = (π1r, π2r, . . . , πnrr)
′
.

For the given network structure Wr and heterogeneity Πr, we assume that the ith agent

chooses its effort level to maximize the following utility function:

Uir(yir,Wr,Πr) = yire
′

ir

(
∞∑
j=0

ρj0
j!
W j
rΠr

)
− 1

2
y2
ir, (2.1)

where eir is the ith column of the nr × nr identify matrix Inr and ρ0 is scalar parameter.

In Uir(yir,Wr,Πr), the first term represents the benefit, while the second quadratic term

represents the cost of choosing the effort level yir. The benefit term combines the agent’s

own effort level yir with the ith element of the infinite sum
∑∞

j=0
ρj0
j!
W j
rΠr, which is defined

as
∑∞

j=0
ρj0
j!
W j
rΠr =

(
Πr + ρWrΠr +

ρ20
2
W 2
r Πr +

ρ30
6
W 3
r Πr + . . .

)
. This sum reflects the ex-

ternalities generated by heterogeneity due to social interactions within the rth group. The

first term in the sum, Πr, represents the externality effect of the agent’s own heterogeneity;

the second term, ρ0WrΠr, represents the externality level from first-order neighbors; the

third term,
ρ20
2
W 2
r Πr, represents the externality level from second-order neighbors; and all

remaining terms capture the externalities from higher-order neighbors’ heterogeneity.

Note that our utility function in (2.1) does not depend on the effort levels of other agents.

To allow for spillover effects, we can alternatively assume the following utility function:

Uir(yir, Y−i,r,Wr,Πr) = yire
′

ir

(
Πr −

1

2

∞∑
j=1

ρj1
j!
W j
r Yr

)
− 1

2
y2
ir, (2.2)

where Y−i,r = (y1r, y2r, . . . , yi−1,r, yi+1,r, . . . , ynrr)
′

is the vector of effort levels, excluding

the effort level of the ith agent and ρ1 is a scalar parameter. In this formulation, the

infinite sum
∑∞

j=1
ρj1
j!
W j
r Yr =

(
ρ1WrYr +

ρ21
2
W 2
r Yr +

ρ31
6
W 3
r Yr + . . .

)
represents all spillover

effects generated by social interactions within the rth group. The first term in the sum is

the social norm that represents the spillover effect from the first-order neighbors, the second
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term represents the spillover effect from the second-order neighbors, and all other terms

represent the spillover effects from high-order neighbors. Note that if ρ0 = ρ1 = 0, then

Uir(yir, Y−i,r,Wr,Πr) = Uir(yir,Wr,Πr), and social interactions within the rth group do not

generate externalities or spillover effects beyond the agent’s own heterogeneity. In either case,

the benefit from the externality and spillover effects depends on the sign and magnitude of

the scalar parameters ρ0 and ρ1.

Our utility functions are different from the spillover and conformist utility functions that

are used to derive the linear-in-means model of Manski (1993). In the spillover model, the

ith agent chooses its effort level by maximizing the following utility function:

USir(yir, Y−i,r,Wr,Πr) = yirπir + ρSyire
′

irWrYr −
1

2
y2
ir, (2.3)

where 0 ≤ ρS < 1 is a parameter measuring the intensity of the spillover effect of the social

norm e
′
irWrYr (Boucher et al., 2024; Brock and Durlauf, 2001). In the conformist model, the

ith agent chooses its effort level by maximizing the following utility function:

UCir (yir, Y−i,r,Wr,Πr) = yirπir −
ρC

2

(
yir − e

′

irWrYr

)2

− 1

2
y2
ir, (2.4)

where ρC ≥ 0 is a scalar parameter for taste conformity(Boucher et al., 2024; Patacchini and

Zenou, 2009). Recently, Boucher et al. (2024) generalize both models and assume that the

ith agent chooses its effort level by maximizing the following utility function:

UGir (yir, Y−i,r,Wr,Πr) = yirπir + ρG1 yirỹ−i,r(β)− 1

2

(
y2
ir + ρG2 (yir − ỹ−i,r(β))2) , (2.5)

where ỹ−i,r(β) =
(∑n

j=1 wij,ry
β
jr

)1/β

is the CES social norm with the unrestricted parameter

β, and ρG1 and ρG2 are scalar parameters. In UGir (yir, Y−i,r,Wr,Πr), the sum of the first

two terms denote the benefit, while the last term the cost of choosing yir. Under certain

constraints on ρG1 and ρG2 , Boucher et al. (2024) show that UGir (yir, Y−i,r,Wr,Πr) yields a best

response function for yir.

Our approach differs from these approaches in two key ways. First, in Uir(yir,Wr,Πr), we

account for all externality levels generated by heterogeneity, and in Uir(yir, Y−i,r,Wr,Πr), we

account for all spillover effects due to social interactions within the rth group. Second, we do

not impose any restrictions on the scalar parameters ρ0 and ρ1, or the network matrix Wr. In

our setting, the best reply function based on either Uir(yir,Wr,Πr) or Uir(yir, Y−i,r,Wr,Πr)

7



is derived as

yir = e
′

ire
ϕWrΠr, (2.6)

where eϕWr =
∑∞

j=0
ϕj

j!
W j
r is the matrix exponential term, and ϕ = ρ0 in the case of

Uir(yir,Wr,Πr) , while ϕ = −ρ1 in the case of Uir(yir, Y−i,r,Wr,Πr). Therefore, in our

case, the best reply function for the rth group is simply given by

Yr = eϕWrΠr. (2.7)

We further assume that the individual heterogeneity across the members of group r is given

by

Πr = Xrβ1 +WrXrβ2 + λr1nr + Ur, (2.8)

where Xr is the nr×kx matrix of exogenous observed own characteristics with the matching

parameter vector β1, WrXr is the nr × kx matrix of contextual variables (peers’ observed

characteristics) with the matching parameter vector β2, λr is the group-specific fixed effect

for the rth group, 1nr is the nr × 1 vector of ones, and Ur = (u1r, . . . , unrr)
′

is the nr × 1

vector of unobserved characteristics. We further allow for the possibility that the unobserved

characteristics are correlated among the group members by assuming that eτMrUr = Vr,

where τ is a scalar parameter, Mr is another nr×nr network matrix specifying links among the

unobserved factors, and Vr = (v1r, . . . , vnrr)
′

is the nr × 1 vector of unobserved idiosyncratic

characteristics (i.e., the error terms).

Hence, our suggested MES network model takes the following form:

eαWrYr = Xrβ1 +WrXrβ2 + λr1nr + Ur, eτMrUr = Vr, (2.9)

where α = −ϕ. In (2.9), α is the endogenous effect, β1 is the vector of own effects from

own observed characteristics, β2 is the vector of contextual effects from the observed peers’

characteristics, λr is the unobserved group heterogeneity, and τ is the correlation effect.

Since the matrix exponential terms eαWr and eτMr are always invertible for any finite value

of α and τ , the reduced form of our model always exists and is given by

Yr = e−αWr
(
Xrβ1 +WrXrβ2 + λr1nr + e−τMrVr

)
. (2.10)
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3 Transformation approach

3.1 Estimation under homoskedasticity

In this section, we provide the details of our estimation approach for the MES network model

under homoskedasticity. We require the following assumptions.

Assumption 1. The vir’s are independent and identically distributed (i.i.d.) across i and r

with mean zero and variance σ2
0, and E|vir|4+% <∞ for some % > 0.

Assumption 2. The network matrices are row-normalized, i.e., Wr1nr = 1nr and Mr1nr =

1nr for r = 1, . . . , R.

Assumption 3. The network matrices Wr and Mr are uniformly bounded in both row sum

and column sum matrix norms for r = 1, . . . , R.

Assumption 4. There exists a constant c > 0 such that |α| ≤ c and |τ | ≤ c, and the true

parameter vector ζ0 = (α0, τ0)
′

lies in the interior of ∆ = [−c, c]× [−c, c].

Under Assumption 1, we assume that the error terms are independent and identically

distributed across i and r. The moment condition E|vir|4+% <∞ ensures that we can apply

the central limit theorem (CLT) for linear and quadratic forms to the score functions of our

model (Kelejian and Prucha, 2001, 2010). Assumption 2 is necessary when introducing the

likelihood function. Assumption 3 provides the essential properties of the network matrices.

It ensures that the network correlation is limited to a manageable degree (Kelejian and

Prucha, 2001, 2010). Assumption 4 requires that the parameter space of the parameters in

the matrix exponential terms is compact. This assumption and Assumption 3 imply that the

matrix exponential terms are uniformly bounded in both row sum and column sum matrix

norms. This can be seen from
∥∥eαWr

∥∥ = ‖
∑∞

i=0 α
iW i

r/i!‖ ≤
∑∞

i=0 |α|i‖Wr‖i/i! = e|α|‖Wr‖,

which is bounded if |α| and ‖Wr‖ are bounded, where ‖ · ‖ is either the row sum or the

column sum matrix norm.

Define the nr × k matrix Zr = (Xr,WrXr) and the k × 1 vector β = (β
′
1, β

′
2)
′
, where

k = 2kx. Then, the MES network model can be written as

eαWrYr = Zrβ + λr1nr + Ur, eτMrUr = Vr, r = 1, 2, . . . , R. (3.1)

In order to avoid the incidental parameter problem in the estimation of (3.1), we need

to eliminate the group fixed effects from the model. To that end, we use an orthogonal

transformation based on the decomposition of Jr = Inr − 1
nr
1nr1

′
nr

(Lee and Yu, 2010). Let(
Fnr ,

1√
nr
1nr

)
be the matrix containing the orthonormal eigenvectors of Jr, where Fnr is the
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nr× (nr− 1) matrix that contains the eigenvectors corresponding to the eigenvalues of one.1

Pre-multiplying both sides of (3.1) with F
′
nr

, we obtain,

F
′

nr
eαWrYr = Z∗rβ + U∗r , F

′

nr
eτMrUr = V ∗r (3.2)

where Z∗r = F
′
nr
Zr, U

∗
r = F

′
nr
Ur and V ∗r = F

′
nr
Vr. Under Assumption 2, we have

F
′

nr
eαWrYr = F

′

nr
eαWr

(
FnrF

′

nr
+

1

nr
1nr1

′

nr

)
Yr

= F
′

nr
eαWrFnrF

′

nr
Yr +

1

nr
F
′

nr
eαWr1nr1

′

nr
Yr

= F
′

nr
eαWrFnrY

∗
r +

1

nr
F
′

nr
eαWr1nr1

′

nr
Yr,

where Y ∗r = F
′
nr
Yr. Note that F

′
nr
eαWr1nr1

′
nr
Yr =

∑∞
i=0

αi

i!
F
′
nr
W i
r1nr1

′
nr
Yr = 0 because

Wr1nr = 1nr and F
′
nr
1nr = 0. Also, note that

F
′

nr
eαWrFnr =

∞∑
i=0

αi

i!
F
′

nr
W i
rFnr =

∞∑
i=0

αi

i!

(
F
′

nr
WrFnr

)i
= eαF

′
nr
WFnr .

Thus, we have F
′
nr
eαWrYr = eαW

∗
r Y ∗r , where W ∗

r = F
′
nr
WrFnr . Similarly, we can write

F
′
nr
eτMrUr = eτM

∗
rU∗r , where M∗

r = F
′
nr
MrFnr . Then, (3.2) can be written as

eαW
∗
r Y ∗r = Z∗rβ + U∗r , eτM

∗
rU∗r = V ∗r . (3.3)

Note that the transformation reduces the effective number of observations in the rth group

from nr to n∗r = (nr − 1). Let N =
∑R

r=1 n
∗
r = n − R be the total number of observations

in the transformed model, θ = (γ
′
, σ2)

′
with γ = (β

′
, ζ
′
)
′

and ζ = (α, τ)
′
. Then, under

Assumption 1, the quasi log-likelihood function of (3.3) can be expressed as

lnL(θ) = −N
2

ln
(
2πσ2

)
+

R∑
r=1

ln
∣∣eαW ∗r ∣∣+

R∑
r=1

ln
∣∣eτM∗r ∣∣− 1

2σ2

R∑
r=1

V ∗
′

r (γ)V ∗r (γ)

= −N
2

ln
(
2πσ2

)
−R (α + τ)− 1

2σ2

R∑
r=1

V ∗
′

r (γ)V ∗r (γ), (3.4)

where | · | is the determinant operator and V ∗r (γ) = eτM
∗
r
(
eαW

∗
r Y ∗r − Z∗rβ

)
. The second

equality in (3.4) follows from the fact that ln
∣∣eαW ∗r ∣∣ = ln eαtr(W ∗r ) = −α and ln

∣∣eτM∗r ∣∣ =

1Some properties of Fnr are (i) JnrFnr = Fnr , (ii) F
′

nr
Fnr

= Inr−1, (iii) F
′

nr
1nr

= 0, (iv) Fnr
F

′

nr
+

1
nr

1nr1
′

nr
= Inr , and (v) FnrF

′

nr
= Jnr .

10



ln eτtr(M∗r ) = −τ , where tr(·) is the trace operator. Thus, lnL(θ) is free of any Jacobian

terms that need to be computed at each iteration during the estimation process.

Using Jr = FnrF
′
nr

and the fact that F
′
nr
eτMrJr = F

′
nr
eτMr , we can express V ∗r (γ) as

V ∗r (γ) = eτM
∗
r
(
eαW

∗
r Y ∗r − Z∗rβ

)
= F

′

nr
eτMrFnr

(
F
′

nr
eαWrYr − F

′

nr
Zrβ

)
= F

′

nr
eτMrJr

(
eαWrYr − Zrβ

)
= F

′

nr
eτMr

(
eαWrYr − Zrβ

)
= F

′

nr
Vr(γ), (3.5)

where Vr(γ) = eτMr
(
eαWrYr − Zrβ

)
. Thus, we have V ∗

′
r (γ)V ∗r (γ) = V

′
r (γ)FnrF

′
nr
Vr(γ) =

V
′
r (γ)JrVr(γ). This important property allows us to express lnL(θ) in terms of the original

variables:

lnL(θ) = −N
2

ln
(
2πσ2

)
−R (α + τ)− 1

2σ2

R∑
r=1

V
′

r (γ)JrVr(γ). (3.6)

Let Blkdiag(A1, . . . , AR) be the block-diagonal matrix formed by constant matricesA1, . . . , AR.

Define eαW = Blkdiag(eαW1 , . . . , eαWR), eτM = Blkdiag(eτM1 , . . . , eτMR), W = Blkdiag(W1, . . . ,WR),

M = Blkdiag(M1, . . . ,MR), Jn = Blkdiag(J1, . . . , JR), Y = (Y
′

1 , . . . , Y
′
R)
′
, Z = (Z

′
1, . . . , Z

′
R)
′
,

U = (U
′
1, . . . , U

′
R)
′

and V = (V
′

1 , . . . , V
′
R)
′
. Then, (3.6) can be expressed as

lnL(θ) = −N
2

ln
(
2πσ2

)
−R (α + τ)− 1

2σ2
V
′
(γ)JnV (γ), (3.7)

where V (γ) = eτM(eαWY − Zβ). From the first-order conditions with respect to β and σ2,

we respectively have

β̂(ζ) =
(
Z
′
eτM

′
Jne

τMZ
)−1 (

Z
′
eτM

′
Jne

τMeαWY
)
, (3.8)

σ̂2(ζ) =
1

N

(
eαWY − Zβ̂(ζ)

)′
eτM

′
Jne

τM
(
eαWY − Zβ̂(ζ)

)
. (3.9)

Substituting (3.8) and (3.9) into (3.7), we get the concentrated quasi log-likelihood function,

lnL(ζ) = −N
2

(ln (2π) + 1)−R (α + τ)− N

2
ln σ̂2(ζ). (3.10)

Let θ0 = (γ
′
0, σ

2
0)
′
with γ0 = (β

′
0, ζ

′
0)
′
be the true parameter vector. Then, the QML estimator

ζ̂ of ζ0 maximizes (3.10), i.e., ζ̂ = argmaxζ lnL(ζ). Upon substituting ζ̂ into (3.8) and (3.9),

we obtain the QML estimators β̂ = β̂(ζ̂) and σ̂2 = σ̂2(ζ̂) of β0 and σ2
0, respectively.

To ensure that ζ0 is globally identified in our model, we require that 1
N

(G(ζ)−G(ζ0)) > 0

for any ζ 6= ζ0, where G(ζ) = maxβ,σ2 E (lnL(ζ)). To investigate this condition, we define

11



the following terms:

K11(ζ) = Z
′
eτM

′
Jne

τMZ, K12(ζ) = K
′

21(ζ) = Z
′
eτM

′
Jne

τMe(α−α0)WZβ0,

K22(ζ) = (e(α−α0)WZβ0)
′
eτM

′
Jne

τMe(α−α0)WZβ0. (3.11)

Assumption 5. Z is exogenous, with uniformly bounded elements, and has full column rank.

Also limN→∞
1
N
Z
′
eτM

′
Jne

τMZ exists and is non-singular, uniformly in τ ∈ [−c, c].

Assumption 6. Either

(a) limN→∞
1
N
K(ζ) = limN→∞

1
N

(
K22(ζ)−K ′12(ζ)K−1

11 (ζ)K12(ζ)
)
≥ 0, and the equality

holds only when ζ = ζ0; or

(b) limN→∞ ln(σ2(ζ))− ln(σ2
0)+2R(α−α0)+2R(τ−τ0), where σ2(ζ) =

σ2
0

N
tr(A

′
(ζ)JnA(ζ))

with A(ζ) = eτMe(α−α0)W e−τ0M , is not zero for ζ 6= ζ0.

Assumption 5 provides some regularity conditions and corresponds to Assumption 4.2 in

Lee et al. (2010). Assumption 6 provides sufficient conditions for the global identification

of ζ0 and can be considered as the extension of Assumption 5.1 in Lee et al. (2010) to our

setting (see the proof of Theorem 3.1 for the details). The following theorem states the

consistency of the QML estimator.

Theorem 3.1. Under Assumptions 1–6, θ̂ is a consistent estimator of θ0, i.e., θ̂
p−−→ θ0.

Proof. See Section B.1 in the web appendix.

To derive the asymptotic distribution of θ̂, we apply the mean value theorem to the

score functions to get
√
N(θ̂− θ0) = −

(
1
N
∂2lnL(θ)

∂θ∂θ′

)−1
1√
N

∂lnL(θ0)
∂θ

, where θ lies between θ̂ and

θ0 element-wise (Jennrich, 1969, Lemma 3). Let Ψ(θ0) = − 1
N

E
(
∂2lnL(θ0)

∂θ∂θ′

)
, which can be

derived as

Ψ(θ0) =
1

Nσ2
0


K?

11 ∗ ∗ ∗
K?

21 K?
22 ∗ ∗

01×k 0 0 ∗
01×k 0 0 0

+
1

N


0k×k ∗ ∗ ∗
01×k tr(JnW(JnW)s) ∗ ∗
01×k tr(JnW(JnM)s) tr((JnM)(JnM)s) ∗
01×k

R
σ2
0

R
σ2
0

N
2σ4

0

 ,

whereK?
11 = Z

′
eτ0M

′
Jne

τ0MZ, K?
21 = −β ′0Z

′
W
′
eτ0M

′
Jne

τ0MZ, K?
22 = β

′
0Z
′
W
′
eτ0M

′
Jne

τ0MWZβ0,

W = eτ0MWe−τ0M , and As = A + A
′

for any square matrix A. It can be shown that the

limit of Ψ(θ0) is non-singular under the following assumption (see the proof of Theorem 3.2

for the details).
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Assumption 7. limN→∞
1
N

(
tr((JnW)(JnW)s)tr((JnM)(JnM)s)−tr2((JnW)(JnMs))

tr((JnM)(JnM)s)

)
is strictly positive.

Let µ3 = E(v3
ir) and µ4 = E(v4

ir), and define κ = (µ4 − 3σ4
0)/σ4

0. Then, we can show that

Ω(θ0) = Var
(

1√
N

∂lnL(θ0)
∂θ

)
= Ψ(θ0) + Υ, where

Υ =
1

N


0k×k ∗ ∗ ∗

−µ3
σ4
0
vec

′
D(JnW)Jne

τ0MZ Υ22 ∗ ∗
−µ3
σ4
0
vec

′
D(JnM)Jne

τ0MZ Υ32 κvec
′
D(JnM)vecD(JnM) ∗

01×k Υ42 − κ
2σ2

0
vec

′
D(JnM)vecD(Jn) κ

4σ4
0
vec

′
D(Jn)vecD(Jn)

 ,

and

Υ22 =
2µ3

σ4
0

vec
′

D(JnW)Jne
τ0MWZβ0 + κvec

′

D(JnW)vecD(JnW),

Υ32 =
µ3

σ4
0

vec
′

D(JnM)Jne
τ0MWZβ0 + κvec

′

D(JnW)vecD(JnM),

Υ42 = − κ

2σ2
0

vec
′

D(JnW)vecD(Jn).

Theorem 3.2. Under Assumptions 1–7, we have

√
N(θ̂ − θ0)

d−−→ N
(

0, lim
N→∞

Ψ−1(θ0)Ω(θ0)Ψ−1(θ0)
)
,

where Ψ(θ0) = − 1
N

E
(
∂2lnL(θ0)

∂θ∂θ′

)
and Ω(θ0) = Var

(
1√
N

∂lnL(θ0)
∂θ

)
.

Proof. See Section B.2 in the web appendix.

For inference, we suggest using the plug-in estimators of Ψ(θ0) and Ω(θ0) formulated with

θ̂. The expression for Ω(θ0) contains µ3 and κ. To define consistent estimators of µ3 and κ,

let Ṽ = JnV and fjh be the (j, h)th element of Jn for j, h = 1, . . . , n. Also, let ṽj and vj be

the jth element of Ṽ and V , respectively, for j = 1, 2, . . . , n. Then, ṽj = fj1v1 + . . .+ fjnvn,

for j = 1, 2, . . . , n. Assumption 1 ensures that

E(ṽ4
j ) =

n∑
h=1

f 4
jhE(v4

h) + 3σ4
0

n∑
h=1

n∑
l=1

f 2
jhf

2
jl − 3σ4

0

n∑
h=1

f 4
jh = κ

n∑
h=1

f 4
jhσ

4
0 + 3σ4

0

n∑
h=1

n∑
l=1

f 2
jhf

2
jl.

Summing E(ṽ4
j ) over j and solving for κ, we obtain

κ =

∑n
j=1 E(ṽ4

j )− 3σ4
0

∑n
j=1

∑n
h=1

∑n
l=1 f

2
jhf

2
jl

σ4
0

∑n
j=1

∑n
h=1 f

4
jh

.
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This last expression suggests that a consistent estimator for κ can be formulated as

κ̂ =

∑n
j=1
̂̃v4

j − 3σ̂4∑n
j=1

∑n
h=1

∑n
l=1 f

2
jhf

2
jl

σ̂4∑N
j=1

∑n
h=1 f

4
jh

(3.12)

where σ̂2 = σ̂2(ζ̂) and ̂̃vj is the jth element of Jne
τ̂M
(
eα̂WY − Zβ̂

)
. Similarly, under As-

sumption 1, we have E(ṽ3
j ) =

∑n
h=1 f

3
jhE(v3

h) = µ3

∑n
h=1 f

3
jh, which gives µ3 = E(ṽ3

j )/
∑n

h=1 f
3
jh.

This last expression suggests the following estimator for µ3:

µ̂3 =

∑n
j=1
̂̃v3

j∑n
j=1

∑n
h=1 f

3
jh

. (3.13)

3.2 Estimation under heteroskedasticity

In this section, we consider the estimation of the MES network model under heteroskedas-

ticity. The estimation approach consists of two steps. In the first step, the score functions

obtained from the quasi log-likelihood function are adjusted so that their expectations at the

true parameter vector are zero under heteroskedasticity. In the second step, we define our

suggested estimator as the root of the adjusted score functions. We start by specifying the

form of heteroskedasticity.

Assumption 8. The vir’s are independently distributed over r and i with E (vir) = 0 and

Var (vir) = σ2
ir, and E |vir|4+% <∞ for some % > 0.

We will denote the true parameter value as θ0 = (β
′
0, ζ

′
0)
′

with ζ0 = (α0, τ0)
′
, and any

arbitrary value in the parameter space as θ = (β
′
, ζ
′
)
′

with ζ = (α, τ)
′
. Based on (3.7), the

relevant quasi-score functions are

S(θ) =


β : Z

′
eτM

′
JnV (θ),

α : −V ′(θ)JnY (ζ)−R,

τ : −V ′(θ)JnMV (θ)−R,

(3.14)

where V (θ) = eτM
(
eαWY − Zβ

)
and Y (ζ) = eτMWeαWY . Let Σ = Blkdiag(Σ1, . . . ,ΣR),

where Σr = Diag(σ2
1r, . . . , σ

2
nrr) is the nr × nr diagonal matrix containing the unknown
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variance terms for r = 1, . . . , R. Then, E (S(θ0)) can be derived as

E(S(θ0)) =


β : E

(
Z
′
eτ0M

′
JnV

)
= 0,

α : −E
(
V
′
JnY (ζ0)

)
−R = −tr(ΣJnW)−R,

τ : −E
(
V
′
JnMV

)
−R = −tr(ΣJnM)−R,

(3.15)

where W = eτ0MWe−τ0M . Under our assumptions, it follows that tr(ΣJnW) = O(N) and

tr(ΣJnM) = O(R). Thus, plimN→∞
1
N
S(θ0) 6= 0 because 1

N
E(S(θ0)) = O(1). This observa-

tion suggests that the QMLE may not be consistent under heteroskedasticity. However, if

W and M are commutative, i.e., WM = MW , then W = eτ0MWe−τ0M = W . Thus, we have

tr(ΣJnW) = tr (ΣJnW ) =
∑R

r=1 tr (ΣrJrWr) = −
∑R

r=1
1
nr

tr(Σr1nr1
′
nr
Wr) = O(R). Hence,

plimN→∞
1
N
S(θ0) = 0 when R/N → 0.

We will adjust the quasi-score functions such that their expectations become zero in

all cases. We start with the score function with respect to α. First, note that tr(DA) =

tr(DDiag(A)) for a diagonal matrix D and any conformable matrix A. Using this prop-

erty and eα0WY = Zβ0 + Cλλ0 + e−τ0MV , where Cλ = Blkdiag(1n1 , . . . ,1nR
) and λ0 =

(λ1, . . . , λR)
′
, we have

E
(
V
′
JnY (ζ0)

)
= E

(
V
′
Jne

τ0MWeα0WY
)

= E
(
V
′
Jne

τ0MWe−τ0Meτ0Meα0WY
)

= E
(
V
′
JnWeτ0Meα0WY

)
= E

(
V
′
JnWV

)
= tr (ΣJnW) = tr (Σ Diag(JnW))

= tr
(
Σ Diag(JnW)(Diag(Jn))−1Jn

)
= E

(
V
′
Diag(JnW)(Diag(Jn))−1JnV

)
.

Then, subtracting the last term from the fifth term, we obtain

E
(
V
′
JnWV

)
− E

(
V
′
Diag(JnW)(Diag(Jn))−1JnV

)
= 0 =⇒ E

(
V
′WDV

)
= 0,

(3.16)

where WD = JnW− Diag(JnW)(Diag(Jn))−1Jn. Similarly, with respect to the τ element of

E (S(θ0)), we have

E
(
V
′
JnMV

)
= tr (ΣJnM) = tr (Σ Diag(JnM)) = tr

(
Σ Diag(JnM)(Diag(Jn))−1Jn

)
= E

(
V
′
Diag(JnM)(Diag(Jn))−1JnV

)
.

15



Then, subtracting the last term from the first term, we obtain

E
(
V
′MDV

)
= 0, (3.17)

where MD = JnM − Diag(JnM)(Diag(Jn))−1Jn. Hence, we propose the following adjusted

quasi score functions for estimation:

S∗(θ) =


β : Z

′
eτM

′
JnV (θ),

α : −V ′(θ)WD(τ)V (θ),

τ : −V ′(θ)MDV (θ),

(3.18)

where WD(τ) = JnW∗(τ) − Diag(JnW∗(τ))(Diag(Jn))−1Jn, W∗(τ) = W(τ) − Diag(W(τ)),

and W(τ) = eτMWe−τM . The robust M-estimator can thus be derived by solving the system

of nonlinear equations in (3.18). The solution can be simplified by first solving for β for a

given ζ value, which can then be substituted into (3.18) to obtain the concentrated quasi

score functions with respect to ζ. By setting the quasi score function with respect to β to

zero, we obtain the following estimator for a given ζ value:

β̂M(ζ) =
(
Z
′
eτM

′
Jne

τMZ
)−1 (

Z
′
eτM

′
Jne

τMeαWY
)
. (3.19)

Substituting β̂M(ζ) back into the α and τ elements of S∗(θ), we obtain the following con-

centrated quasi score functions:

S∗c(ζ) =

α : −V̂
′

(ζ)WD(τ)V̂ (ζ),

τ : −V̂
′

(ζ)MDV̂ (ζ),
(3.20)

where V̂ (ζ) = V (β̂M(ζ), ζ) = eτM
(
eαWY − Zβ̂M(ζ)

)
. Then, we define the robust M-

estimator (RME) ζ̂M of ζ0 by ζ̂M = argsolve{S∗c(ζ) = 0}. Substituting ζ̂M into (3.19) yields

the RME β̂M = β̂M(ζ̂M) of β0. Note that the consistency of θ̂M = (β̂
′

M , ζ̂
′

M)
′

follows from

the consistency of ζ̂M , since β̂M = β̂M(ζ̂M). To prove the consistency of ζ̂M , we define the

population counterpart of (3.18) as

S∗(θ) = E(S∗(θ)) =


β : E

(
Z
′
eτM

′
JnV (θ)

)
,

α : −E
(
V
′
(θ)WD(τ)V (θ)

)
,

τ : −E
(
V
′
(θ)MDV (θ)

)
.

(3.21)
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Setting the score function with respect to β to zero yields

βM(ζ) =
(
Z
′
eτM

′
Jne

τMZ
)−1 (

Z
′
eτM

′
Jne

τMeαWE(Y )
)
. (3.22)

Substituting this expression into the α and τ elements of (3.21), we obtain the population

counterparts of (3.20):

S∗c(ζ) =

α : −E
(
V
′
(ζ)WD(τ)V (ζ)

)
,

τ : −E
(
V
′
(ζ)MDV (ζ)

)
,

(3.23)

where V (ζ) = V (βM(ζ), ζ). To prove the consistency of ζ̂M , we need to show (i) the uniform

convergence of S∗c(ζ) to S∗c(ζ) over ζ ∈ ∆, i.e., supζ∈∆
1
N

∥∥S∗c(ζ)− S∗c(ζ)
∥∥ = op(1), and (ii)

the identification-uniqueness condition (van der Vaart, 1998, Theorem 5.9). The following

high-level assumption states the identification-uniqueness condition for ζ0
2.

Assumption 9. infζ:d(ζ,ζ0)≥ν
∥∥S∗c(ζ)

∥∥ > 0 for every ν > 0, where d(ζ, ζ0) is a measure of

distance between ζ and ζ0.

Theorem 3.3. Under Assumptions 2–5 and 8–9, we have θ̂M
p−−→ θ0 as n −→∞.

Proof. See Section B.3 in the web appendix.

To derive the asymptotic distribution of the RME, we apply the mean value theorem

to S∗(θ̂M) at θ0, to obtain
√
N(θ̂M − θ0) = −

(
1
N
∂S∗(θ)

∂θ′

)−1
1√
N
S∗(θ0), where θ lies between

θ0 and θ̂M element-wise. In order to apply the CLT to 1√
N
S∗(θ0), we need to show that

S∗(θ0) can be written in terms of linear and quadratic forms of V (see Lemma A.4 in the

web appendix). Since JnV (θ0) = JnV , the adjusted score function in S∗(θ0) with respect to

β can be expressed as Z
′
eτ0M

′
JnV (θ0) = Z

′
eτ0M

′
JnV . For the α element of S∗(θ0), we have

V
′
(θ0)WDV

′
(θ0), where V (θ0) = eτ0M

(
eα0WY − Zβ0

)
= eτ0MCλλ0 + V . Then,

1√
N
V
′
(θ0)WDV (θ0) =

1√
N

(eτ0MCλλ0 + V )
′WD

(
eτ0MCλλ0 + V

)
=

1√
N
V
′WDV +

1√
N
V
′WDe

τ0MCλλ0 +
1√
N
λ
′

0C
′

λe
τ0M

′

WDV

+
1√
N
λ
′

0C
′

λe
τ0M

′

WDe
τ0MCλλ0 =

1√
N
V
′WDV + op(1),

2In Section B.6 in the web appendix, we provide some low-level conditions that are sufficient for Assump-
tion 9 to hold.
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because WDe
τ0MCλλ0 = 0 and 1√

N
λ
′
0C
′

λe
τ0M

′
WDV = op(1) by Lemma A.6 in the web ap-

pendix. Similarly, we have 1√
N
V (θ0)MDV (θ0) = 1√

N
V
′MDV + op(1) by Lemma A.6 in the

web appendix. Thus, we can express S∗(θ0) in terms of linear and quadratic forms of V as

1√
N
S∗(θ0) =


β : 1√

N
Z
′
eτ0M

′
JnV,

α : − 1√
N
V
′WDV + op(1),

τ : − 1√
N
V
′MDV + op(1).

(3.24)

This result in (3.24), combined with 1
N
∂S∗(θ)

∂θ′
− 1

N
E
(
∂S∗(θ0)

∂θ′

)
= op(1), leads to the following

theorem.

Theorem 3.4. Under Assumptions 2–5 and 8–9, we have

√
N(θ̂M − θ0)

d−−→ N
(

0, lim
N→∞

Ψ∗−1(θ0)Ω∗(θ0)Ψ∗−1′(θ0)
)
, (3.25)

where Ψ∗(θ0) = − 1
N

E
(
∂S∗(θ0)

∂θ′

)
and Ω∗(θ0) = Var

(
1√
N
S∗(θ0)

)
are assumed to exist and

Ψ∗(θ0) is assumed to be positive definite for sufficiently large N .

Proof. See Section B.4 in the web appendix.

Theorem 3.4 indicates that we need consistent estimators of Ψ∗(θ0) and Ω∗(θ0) for in-

ference. In the case of Ψ∗(θ0), we can use the observed counterpart given by Ψ∗(θ̂M) =

− 1
N
∂S∗(θ)

∂θ′
|θ=θ̂M . The elements of Ψ∗(θ) are given below.

NΨ∗ββ(θ) = Z
′
eτM

′
Jne

τMZ, NΨ∗βα(θ) = −Z ′eτM ′JnY (ζ), NΨ∗βτ (θ) = −Z ′eτM ′(JnM)sV (θ),

NΨ∗αβ(θ) = −V ′(θ)Ws
D(τ)eτMZ,NΨ∗αα(θ) = Y

′
(ζ)WD(τ)V (θ) + V

′
(θ)WD(τ)Y (ζ),

NΨ∗ατ (θ) = V
′
(θ)
(
M
′WD(τ) + WD(τ)M + ẆD(τ)

)
V (θ), NΨ∗τβ(θ) = −V ′(θ)Ms

De
τMZ

NΨ∗τα(θ) = Y
′
(ζ)Ms

DV (θ), NΨ∗ττ (θ) = V
′
(θ)Ms

DMV (θ),

where ẆD(τ) = ∂WD(τ)/∂τ = JnẆ∗(τ) − Diag(JnẆ∗(τ)) (Diag(Jn))−1 Jn with Ẇ∗(τ) =

Ẇ(τ)− Diag(Ẇ(τ)) and Ẇ(τ) = MW(τ)−W(τ)M . Under our stated assumptions, it can

be shown that Ψ∗(θ̂M) = Ψ∗(θ0) + op(1).3 In the case of Ω∗(θ0), we first determine the

closed-form expressions of its elements by using Lemma A.2 in the web appendix:

NΩ∗ββ(θ0) = Z
′
eτ0M

′
JnΣJne

τ0MZ, NΩ∗βα(θ0) = 0, NΩ∗βτ (θ0) = 0, (3.26)

NΩ∗αα(θ0) = tr(ΣWDΣWs
D), NΩ∗ατ (θ0) = tr(ΣWDΣMs

D), NΩ∗ττ (θ0) = tr(ΣMDΣMs
D).

3See the proof of Theorem 3.4 for details.
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Let v̂ir be the ith element of V̂ r = Jre
τ̂MMr

(
eα̂MWrYr − Zrβ̂M

)
for i = 1, . . . , nr and r =

1, . . . , R. We replace Σ in Ω∗(θ0) by Σ̂ = Diag(v̂2
11, . . . , v̂

2
nRR

). Then, we formulate the

estimator of Ω∗(θ0) by Ω̂
∗

= Ω∗(θ̂M), where we replace Σ with Σ̂. In the next theorem, we

show that Ω̂
∗

is a consistent estimator of Ω∗(θ0) when R/N → 0, i.e., when the number of

observations grows faster than the number of groups.

Theorem 3.5. Under Assumptions 2–5 and 8–9, we have Ω̂
∗

= Ω∗(θ0) + op(1).

Proof. See Section B.5 in the web appendix.

Remark 1. The form of Σ̂ needs to be adjusted in the case of group-wise heteroskedasticity.

From Ṽr = JrVr, we obtain ṽir = vir − 1
nr

∑nr

j=1 vjr for r = 1, . . . , R. This relation gives

E(ṽ2
ir) = nr−1

nr
σ2
r under group-wise heteroskedasticity. Thus, we have σ2

r = nr

nr−1
E(ṽ2

ir). This

last result suggests that we can formulate Σ̂ as Σ̂ = Blkdiag
(
σ̂2

1In1 , . . . , σ̂
2
RInR

)
, where σ̂2

r =
1

nr−1

∑nr

i=1 v̂
2
ir for r = 1, . . . , R.

4 Direct approach

In Section 3, we applied the transformation method to eliminate the group fixed effects from

the model and subsequently introduced estimation for the resulting transformed model. This

approach necessitates that both W and M are row-normalized as shown Assumption 2. In

this section, we relax this assumption and estimate the group fixed effects along with other

parameters.

4.1 Estimation under homoskedasticity

Recall that eαW = Blkdiag(eαW1 , . . . , eαWR), eτM = Blkdiag(eτM1 , . . . , eτMR), Y = (Y
′

1 , . . . , Y
′
R)
′
,

Z = (Z
′
1, . . . , Z

′
R)
′
, U = (U

′
1, . . . , U

′
R)
′
, V = (V

′
1 , . . . , V

′
R)
′
, Cλ = blkdiag(1n1 , . . . ,1nR

) and

λ = (λ1, . . . , λR)
′
. Then, (3.1) can be expressed in the following matrix form:

eαWY = Zβ + Cλλ+ U, eτMU = V. (4.1)

Let θ = (β
′
, σ2, ζ

′
)
′

with ζ = (α, τ)
′
, and θ0 = (β

′
0, σ

2
0, ζ

′
0)
′

with ζ0 = (α0, τ0)
′

be the vector

of true parameter values. Then, the quasi log-likelihood function can be expressed as

lnL(θ, λ) = −n
2

ln(2πσ2)− 1

2σ2
V
′
(β, ζ, λ)V (β, ζ, λ), (4.2)
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where V (β, ζ, λ) = eτM
(
eαWY − Zβ − Cλλ

)
and n =

∑R
r=1 nr. Given θ, lnL(θ, λ) is par-

tially maximized at

λ̂(β, ζ) =
(
C
′
(τ)C(τ)

)−1

C
′
(τ)eτM

(
eαWY − Zβ

)
, (4.3)

where C(τ) = eτMCλ. Substituting λ̂(β, ζ) into lnL(θ, λ), we obtain the following concen-

trated quasi log-likelihood function:

lnLc(θ) = −n
2

ln(2πσ2)− 1

2σ2
Ṽ
′
(β, ζ)Ṽ (β, ζ), (4.4)

where Ṽ (β, ζ) = QC(τ)eτM
(
eαWY − Zβ

)
and QC(τ) = In − PC(τ), with the matrix PC(τ)

being defined as PC(τ) = C(τ)
(
C
′
(τ)C(τ)

)−1
C
′
(τ). Based on (4.4), we derive the following

score functions:

Sc(θ) =


β : 1

σ2Z
′
eτM

′
Ṽ (β, ζ),

σ2 : − n
2σ2 + 1

2σ4 Ṽ
′
(β, ζ)Ṽ (β, ζ),

α : − 1
σ2Y

′
eαW

′
W
′
eτM

′
Ṽ (β, ζ),

τ : − 1
σ2 Ṽ

′
(β, ζ)MṼ (β, ζ),

(4.5)

where W = Blkdiag(W1, . . . ,WR), M = Blkdiag(M1, . . . ,MR). Using eα0WY = Zβ0+Cλλ0+

e−τ0MV , we can show that Ṽ (β0, ζ0) = QC(τ0)V . Thus, we can derive E (Sc(θ0)) as

E (Sc(θ0)) =


β : 0k×1,

σ2
ε : − R

2σ2
0
,

α : −tr
(
QC(τ0)eτ0MWe−τ0M

)
,

τ : −tr (QC(τ0)M) ,

(4.6)

where N = n − R. Using Lemma A.7 in the web appendix, we can determine the order of
1
N

E (Sc(θ0)). Thus, we have 1
N

tr
(
QC(τ0)eτ0MWe−τ0M

)
= 1

N
tr(eτ0MWe−τ0M)− 1

N
tr(PC(τ0)eτ0MWe−τ0M) =

O(1/min{n1, . . . , nR}) and similarly, 1
N

tr (QC(τ0)M) = O(1/min{n1, . . . , nR}). These order

terms indicate that when all group sizes diverge, we can ensure that plimN→∞
1
N
Sc(θ0) = 0.

However, we may have plimN→∞
1
N
Sc(θ0) 6= 0 if some group sizes are not large. To make sure

that plimN→∞
1
N
Sc(θ0) = 0 holds in all cases, we suggest using the adjusted score functions
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S†(θ0) = Sc(θ0)− E (Sc(θ0)):

S†(θ) =


β : 1

σ2Z
′
eτM

′
Ṽ (β, ζ),

σ2 : − N
2σ2 + 1

2σ4 Ṽ
′
(β, ζ)Ṽ (β, ζ),

α : − 1
σ2Y

′
eαW

′
W
′
eτM

′
Ṽ (β, ζ) + tr

(
QC(τ)eτMWe−τM

)
,

τ : − 1
σ2 Ṽ

′
(β, ζ)MṼ (β, ζ) + tr (QC(τ)M) .

(4.7)

For a given ζ value, we can use the adjusted score functions with respect to β and σ2
ε to get

the following estimators:

β̂
†
(ζ) =

(
Z
′
eτM

′
QC(τ)eτMZ

)−1

Z
′
eτM

′
QC(τ)eτMeαWY, (4.8)

σ̂†2(ζ) =
1

N
V̂
′

(ζ)V̂ (ζ), (4.9)

where V̂ (ζ) = Ṽ (β̂
†
(ζ), ζ) = QC(τ)eτM

(
eαWY −Xβ̂

†
(ζ)
)

. By substituting β̂
†
(ζ) and σ̂†2(ζ)

into the α and τ elements of S†(θ), we obtain

S†c(ζ) =

α : − 1
σ̂†2(ζ)

Y
′
eαW

′
W
′
eτM

′
V̂ (ζ) + tr

(
QC(τ)eτMWe−τM

)
,

τ : − 1
σ̂†2(ζ)

V̂
′

(ζ)MV̂ (ζ) + tr (QC(τ)M) .
(4.10)

Then, we define the M-estimator (ME) ζ̂
†

of ζ0 by ζ̂
†

= argsolve{S†c(ζ) = 0}. We can use

ζ̂
†

to define the MEs β̂
†

= β̂
†
(ζ̂
†
) and σ̂†2 = σ̂†2(ζ̂

†
). The consistency of ζ̂

†
requires the

population counterpart of S†c(ζ), which we denote by S†(θ) = E
(
S†(θ)

)
. For a given ζ

value, we can derive the following population counterparts of (4.8) and (4.9) from S†(θ) as:

β†(ζ) =
(
Z
′
eτM

′
QC(τ)eτMZ

)−1

Z
′
eτM

′
QC(τ)D(ζ)E(Y ), (4.11)

σ†2(ζ) =
1

N
E
(
V
′
(ζ)V (ζ)

)
, (4.12)

where D(ζ) = eτMeαW and V (ζ) = Ṽ (β†(ζ), ζ). By substituting β†(ζ) and σ†2(ζ) into the α

and τ elements of S†(θ), the population counterpart of S†c(ζ) in (4.10) is given by:

S†c(ζ) =

 α : − 1
σ†2(ζ)

E
(
Y
′
eαW

′
W
′
eτM

′
V (ζ)

)
+ tr

(
QC(τ)eτMWe−τM

)
,

τ : − 1
σ†2(ζ)

E
(
V
′
(ζ)MV (ζ)

)
+ tr (QC(τ)M) .

(4.13)

The consistency of ζ̂
†

requires the following additional assumptions.

Assumption 10. Z is exogenous, with uniformly bounded elements, and has full column rank.
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Also limN→∞
1
N
Z
′
eτM

′
QC(τ)eτMZ exists and is nonsingular, uniformly in τ ∈ [−c, c].

Assumption 11. infζ:d(ζ,ζ0)≥ν
∥∥S†c(ζ)

∥∥ > 0 for every ν > 0, where d(ζ, ζ0) is a measure of

distance between ζ and ζ0.

Assumptions 10 and 11 are the modified versions of Assumptions 5 and 9, respectively.

Then, the consistency of ζ̂
†

follows from the uniform convergence supζ∈∆
1
N

∥∥S†c(ζ)− S†c(ζ)
∥∥ p−−→

0, which is shown in the following theorem.

Theorem 4.1. Under Assumptions 1, 3, 4, 10 and 11, it follows that θ̂
† p−−→ θ0 as N →∞.

Proof. See Section C.1 in the web appendix.

Next, we will derive the asymptotic distribution of θ̂
†
. To that end, we apply the mean

value theorem to S†(θ̂
†
) = 0 at θ0, to obtain

√
N(θ̂

†
− θ0) = −

(
1
N
∂S†(θ)

∂θ′

)−1
1√
N
S†(θ0),

where θ lies between θ0 and θ̂
†

elementwise. Let φ = Zβ0 + Cλλ0. By (4.1), Y can be

expressed as Y = e−α0W (φ + e−τ0MV ). Then, substituting Y = e−α0W (φ + e−τ0MV ) and

Ṽ (β0, ζ0) = QC(τ0)V into S†(θ0), we can express S†(θ0) in terms of linear and quadratic

forms of V in the following way,

S†(θ0) =


β : 1

σ2
0
Z
′
(τ0)V,

σ2 : − N
2σ2

0
+ 1

2σ4
0
V
′
QC(τ0)V,

α : − 1
σ2
0
V
′
T
′
(τ0)QC(τ0)V − 1

σ2
0
φ
′
eτ0M

′
T
′
(τ0)QC(τ0)V + tr (QC(τ0)T (τ0)) ,

τ : − 1
σ2
0
V
′
Q
′
C(τ0)MQC(τ0)V + tr (QC(τ0)M) ,

(4.14)

where T (τ0) = eτ0MWe−τ0M . The CLT for linear-quadratic forms in Lemma A.4 in the

web appendix can be used to establish the asymptotic normality of 1√
N
S†(θ0). Also, our

assumptions ensure that 1
N
∂S†(θ)

∂θ′
− 1

N
E
(
∂S†(θ0)

∂θ′

)
= op(1). These results lead to the following

theorem.

Theorem 4.2. Under Assumptions 1, 3, 4, 10 and 11, as N →∞, we have

√
N(θ̂

†
− θ0)

d−−→ N
(

0, lim
N→∞

Ψ†−1(θ0)Ω†(θ0)Ψ†−1′(θ0)
)
, (4.15)

where Ψ†(θ0) = − 1
N

E
(
∂S†(θ0)

∂θ′

)
and Ω†(θ0) = Var

(
1√
N
S†(θ0)

)
are assumed to exist and

Ψ†(θ0) is assumed to be positive definite for sufficiently large N .

Proof. See Section C.2 in the web appendix.
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An estimator of Ψ†(θ0) can be formulated from the observed counterpart given byH†(θ̂
†
) =

− 1
N
∂S†(θ)

∂θ′
|
θ=θ̂

† . Let H†ab(θ) = − 1
N
∂S†a(θ)

∂b′
for a, b ∈ {β, σ2, α, τ}. Then, we can derive the ele-

ments of H†(θ) as

NH†ββ(θ) =
1

σ2
Z
′
(τ)Z(τ), NH†βσ2(θ) = NH†

′

σ2β(θ) =
1

σ4
Z
′
(τ)Ṽ (β, ζ),

NH†βα(θ) = H†
′

αβ(θ) = − 1

σ2
Z
′
(τ)Y (ζ), NH†βτ (θ) = H†

′

τβ(θ) = − 1

σ2
Z
′
(τ)M sṼ (β, ζ),

NH†σ2σ2(θ) = − N

2σ4
+

1

σ6
Ṽ
′
(β, ζ)Ṽ (β, ζ), NH†σ2α(θ) = NH†ασ2(θ) = − 1

σ4
Y
′
(ζ)Ṽ (β, ζ),

NH†σ2τ (θ) = NH†τσ2(θ) = − 1

σ4
Ṽ
′
(β, ζ)MṼ (β, ζ), NH†αα(θ) =

1

σ2

(
Y
′

2 (ζ)Ṽ (β, ζ) + Y
′
(ζ)Y (ζ)

)
,

NH†ατ (θ) =
1

σ2
Y
′
(ζ)M sṼ (β, ζ) + tr (PC(τ)M sQC(τ)T (τ)) ,

NH†τα(θ) =
1

σ2
Y
′
(ζ)M sṼ (β, ζ),

NH†ττ (θ) =
1

σ2
Ṽ
′
(β, ζ)B

′
(τ)M sṼ (β, ζ) + tr (QC(τ)MPC(τ)M s) ,

where Z(τ) = QC(τ)eτMZ, Y (ζ) = QC(τ)eτMWeαWY , Y2(ζ) = QC(τ)eτMW 2eαWY , B(τ) =

QC(τ)M − PC(τ)M
′
, and T (τ) = eτMWe−τM . In the proof of Theorem 4.2, we show that

H†(θ̂
†
) = Ψ†(θ0) + op(1).

Define Ω†ab(θ0) = 1
N

E
(
S†a(θ0)S†

′

b (θ0)
)

for a, b ∈ {β, σ2, α, τ}. Let q1 = vecD (QC(τ0)),

Q2(τ0) = QC(τ0)T (τ0),Q3(τ0) = QC(τ0)eτ0MW ,Q4(τ0) = QC(τ0)MQC(τ0) and qi = vecD (Qi(τ0))

for i = 2, 3, 4. Let ρ = E(v3
i )/σ

3
0 and κ = E(v4

i )/σ
4
0 − 3 be the skewness and excess kur-

tosis parameters, respectively. Then, by Lemma A.2 in the web appendix, the closed-form
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expressions for the elements of Ω†(θ0) can be derived as:

NΩ†ββ(θ0) =
1

σ2
0

Z
′
(τ0)Z(τ0), NΩ†βσ2(θ0) =

ρ

2σ3
0

Z
′
(τ0)q1,

NΩ†βα(θ0) = − 1

σ2
0

Z
′
(τ0)Q3(τ0)φ− ρ

σ0

Z
′
(τ0)q2,

NΩ†βτ (θ0) = − ρ

σ0

Z
′
(τ0)q4, NΩ†σ2σ2(θ0) =

1

4σ4
0

(κq
′

1q1 + 2N), (4.16)

NΩ†σ2α(θ0) = − ρ

2σ3
0

q
′

1Q3(τ0)φ− 1

2σ2
0

(
κq
′

1q2 + 2tr(Q2(τ0))
)
,

NΩ†σ2τ (θ0) = − 1

2σ2
0

(
κq
′

1q4 + 2tr(QC(τ0)M)
)
,

NΩ†αα(θ0) =
1

σ2
0

φ
′Q′3(τ0)Q3(τ0)φ+

2ρ

σ0

q
′

2Q3(τ0)φ+ κq
′

2q2 + tr (Q2(τ0)Qs2(τ0)) ,

NΩ†ατ (θ0) =
ρ

σ0

q
′

4Q3(τ0)φ+ κq
′

2q4 + tr (Q2(τ0)Qs4(τ0)) ,

NΩ†ττ (θ0) = κq
′

4q4 + tr (Q4(τ0)Qs4(τ0)) .

Let λ̂
†

= λ̂(β̂
†
, ζ̂
†
) be the plug-in estimator of λ0 obtained from (4.3), and ρ̂ and κ̂ be

consistent estimators of ρ and κ, respectively. The plug-in estimator of Ω†(θ0) is then given

by Ω†(θ̂
†
) = Ω†(θ)|

θ=θ̂
†
, λ=λ̂

†
, ρ=ρ̂, κ=κ̂

. The next theorem shows that this plug-in estimator is

a biased estimator of Ω†(θ0) under our stated assumptions.

Theorem 4.3. Under Assumptions 1, 3, 4, 10 and 11, as N →∞, we have

Ω†(θ̂
†
) = Ω†(θ0) + Bias†(τ0) + op(1), (4.17)

where Bias†(τ0) is an (k+ 3)× (k+ 3) matrix with zero entries everywhere except the (α, α)

entry, which is 1
N

tr
(
PC(τ0)Q′2(τ0)Q2(τ0)

)
.

Proof. See Section C.3 in the web appendix.

The bias term arises since we may not be able to consistently estimate the group fixed

effects λ0. Under our assumptions, both Q2(τ0) and PC(τ0) are bounded in row sum and

column sum matrix norms. Using Lemma A.7 in the web appendix, we can show that
1
N

tr
(
PC(τ0)Q′2(τ0)Q2(τ0)

)
= O(1/min{n1, . . . , nR}). Thus, when all group sizes are large,

the bias term will become negligible. However, in settings with some fixed group sizes, the

bias correction is necessary for valid inference. Therefore, we suggest using the bias corrected

estimator Ω̂
†

= Ω†(θ̂
†
)− Bias†(τ̂ †) to have valid inference in all cases.

Note that the plug-in estimator Ω†(θ̂
†
) still requires the consistent estimators of ρ and

κ. Recall that Ṽ (β0, ζ0) = QC(τ0)eτ0M(eα0WY − Zβ0) = QC(τ0)V . Then, from Ṽ (β0, ζ0) =
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QC(τ0)V , we have ṽj = qj1v1 + . . . + qjnvn, where qjh is the (j, h)th element of QC(τ0), and

vj and ṽj are the jth element of V and Ṽ (β0, ζ0), respectively. Since vj’s are i.i.d, we have

E(ṽ3
j ) =

∑N
h=1 q

3
jhE(v3

h) = σ3
0ρ
∑n

h=1 q
3
jh. Summing E(ṽ3

j ) over j and solving for ρ, we obtain

ρ =

∑n
j=1 E(ṽ3

j )

σ3
0

∑n
j=1

∑n
h=1 q

3
jh

. (4.18)

This result suggests the following sample counterpart as a consistent estimator for ρ:

ρ̂ =

∑n
j=1 v̂

3
j

σ̂†3
∑n

j=1

∑n
h=1 q̂

3
jh

, (4.19)

where v̂j is the jth element of V̂ (β̂
†
, ζ̂
†
) = QC(τ̂ †)eτ̂

†M(eα̂
†WY −Zβ̂

†
) and q̂jh is the (j, h)th

element of QC(τ̂ †). Similarly, from ṽj = qj1v1 + . . .+ qjnvn, we obtain

E(ṽ4
j ) =

n∑
h=1

q4
jhE(v4

h) + 3σ4
0

n∑
h=1

n∑
l=1

q2
jhq

2
jl − 3σ4

0

n∑
h=1

q4
jh

= κ
n∑
h=1

q4
jhσ

4
0 + 3σ4

0

n∑
h=1

n∑
l=1

q2
jhq

2
jl. (4.20)

Summing E(ṽ4
j ) over j and solving for κ, we obtain

κ =

∑n
j=1 E(ṽ4

j )− 3σ4
0

∑n
j=1

∑n
h=1

∑n
l=1 q

2
jhq

2
jl

σ4
0

∑n
j=1

∑n
h=1 q

4
jh

. (4.21)

Thus, we can consider the following sample counterpart of this equation as a consistent

estimator for κ:

κ̂ =

∑n
j=1 v̂

4
j − 3σ̂†4

∑n
j=1

∑n
h=1

∑n
l=1 q̂

2
jhq̂

2
jl

σ̂†4
∑n

j=1

∑n
h=1 q̂

4
jh

. (4.22)

4.2 Estimation under heteroskedasticity

Recall that D(ζ0) = eτ0Meα0W , D(ζ0)Y = eτ0Mφ+ V , T (τ0) = eτ0MWe−τ0M and Ṽ (β0, ζ0) =

QC(τ0)V . Let Ṽ = Ṽ (β0, ζ0) and T
′
(τ0) = Diag

(
T
′
(τ0)QC(τ0)

)
Diag (QC(τ0))−1. Also, note

that tr(AB) = tr(ADiag(B)) for a diagonal matrix A and any conformable matrix B. We

will use this fact to adjust the score functions. Under Assumption 8, the α element of
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E (Sc(θ0)) can be determined as

E
(
Y
′
eα0W

′
W
′
eτ0M

′
Ṽ
)

= E
(
Y
′
D
′
(ζ0)T

′
(τ0)QC(τ0)V

)
= tr

(
ΣT

′
(τ0)QC(τ0)

)
= tr

(
Σ Diag

(
T
′
(τ0)QC(τ0)

))
= tr

(
Σ Diag

(
T
′
(τ0)QC(τ0)

)
Diag (QC(τ0))−1QC(τ0)

)
= tr

(
ΣT

′
(τ0)QC(τ0)

)
= E

(
Y
′
D
′
(ζ0)T

′
(τ0)QC(τ0)V

)
. (4.23)

In (4.23), subtracting the last element from the second element yields

E
(
Y
′
D
′
(ζ0)T

′
(τ0)QC(τ0)V

)
− E

(
Y
′
D
′
(ζ0)T

′
(τ0)QC(τ0)V

)
= 0,

=⇒ E
(
Y
′
D
′
(ζ0)

(
T
′
(τ0)− T ′(τ0)

)
QC(τ0)V

)
= 0. (4.24)

We suggest using the sample counterpart of (4.24) as the adjusted robust score function for

the α element:

−Y ′D′(ζ)
(
T
′
(τ)− T ′(τ)

)
Ṽ (β, ζ). (4.25)

Let Q4(τ0) = Diag (Q4(τ0)) Diag (QC(τ0))−1, where Q4(τ0) = QC(τ0)MQC(τ0). Then, apply-

ing similar steps to the τ element of E (Sc(θ0)) yields

E
(
Ṽ
′
MṼ

)
= E

(
V
′
QC(τ0)MQC(τ0)V

)
= tr (ΣQ4(τ0)) = tr (Σ Diag(Q4(τ0)))

= tr
(
Σ Diag (Q4(τ0)) Diag (QC(τ0))−1QC(τ0)

)
= E

(
V
′Q4(τ0)QC(τ0)V

)
. (4.26)

Subtracting the last element from the second element in (4.26) yields

E
(
V
′
QC(τ0)MQC(τ0)V

)
− E

(
V
′Q4(τ0)QC(τ0)V

)
= 0,

=⇒ E
(
V
′ (Q4(τ0)−Q4(τ0)

)
QC(τ0)V

)
= 0,

=⇒ E
(

(eα0WY − Zβ0)
′
eτ0M

′ (
Q4(τ0)−Q4(τ0)

)
QC(τ0)V

)
= 0 (4.27)

Based on (4.27), we suggest using the following adjusted robust score function with respect

to τ :

−(eαWY − Zβ)
′
eτM

′ (
Q4(τ)−Q4(τ)

)
Ṽ (β, ζ). (4.28)
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Combining (4.25) and (4.28), we suggest the following robust versions of the score functions

for consistent estimation under Assumption 8:

S‡(β, ζ) =


β : Z

′
(τ)Ṽ (β, ζ),

α : −Y ′D′(ζ)
(
T
′
(τ)− T ′(τ)

)
Ṽ (β, ζ),

τ : −
(
eαWY − Zβ

)′
eτM

′ (
Q4(τ)−Q4(τ)

)
Ṽ (β, ζ).

(4.29)

Note that from (4.23), we have 1
N

E
(
Y
′
eα0W

′
W
′
eτ0M

′
Ṽ
)

= 1
N

tr
(
ΣT

′
(τ0)QC(τ0)

)
= 1

N
tr
(
ΣT

′
(τ0)
)
−

1
N

tr
(
ΣT

′
(τ0)PC(τ0)

)
= O(1) +O(1/min{n1, . . . , nR}) = O(1) by Lemma A.7 in the web ap-

pendix. IfM andW are commutative, then tr
(
ΣT

′
(τ0)
)

= 0, which yields 1
N

E
(
Y
′
eα0W

′
W
′
eτ0M

′
Ṽ
)

=

O(1/min{n1, . . . , nR}). Also, from (4.26), we have the following: 1
N

E
(
Ṽ
′
MṼ

)
= 1

N
tr (ΣQ4(τ0)) =

1
N

tr (ΣPC(τ0)MPC(τ0)) − 1
N

tr (ΣMPC(τ0)) − 1
N

tr (ΣPC(τ0)M) = O(1/min{n1, . . . , nR}) by

Lemma A.7 in the web appendix. These results indicate that the necessary condition

plimN→∞
1
N
Sc(θ0) = 0 can only holds if W and M are commutative and all group sizes

are large. To ensure that plimN→∞
1
N
Sc(θ0) = 0 holds in all cases, we suggest using S‡(β, ζ)

for estimation.

To derive the robust M-estimator from (4.29), we can similarly first solve for β for a given

ζ from the score function with respect to β, which is the same as (4.8):

β̂
‡
(ζ) = β̂

†
(ζ) =

(
Z
′
eτM

′
QC(τ)eτMZ

)−1

Z
′
eτM

′
QC(τ)eτMeαWY. (4.30)

Then, substituting β̂
‡
(ζ) into the α and τ elements of S‡(β, ζ), we obtain the concentrated

robust score functions:

S‡c(ζ) =

α : −Y ′D′(ζ)
(
T
′
(τ)− T ′(τ)

)
V̂ (ζ),

τ : −
(
eαWY − Zβ̂

‡
(ζ)
)′
eτM

′ (
Q4(τ)−Q4(τ)

)
V̂ (ζ),

(4.31)

where V̂ (ζ) = Ṽ (β̂
‡
(ζ), ζ). Then, we define the RME ζ̂

‡
of ζ0 by ζ̂

‡
= argsolve{S‡c(ζ) = 0}.

From (4.30), we can define the RME β̂
‡

= β̂
‡
(ζ̂
‡
) of β0.

Let S‡(β, ζ) = E
(
S‡(β, ζ)

)
be the population counterpart of the robust score functions.

For a given ζ value, we can derive the estimator β‡(ζ) = β∗(ζ) in (4.11), which can be
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substituted into the α and τ elements of S‡(β, ζ) to obtain:

S‡c(ζ) =

α : −E
(
Y
′
D
′
(ζ)
(
T
′
(τ)− T ′(τ)

)
V (ζ)

)
,

τ : −E
((
eαWY − Zβ‡(ζ)

)′
eτM

′ (
Q4(τ)−Q4(τ)

)
V (ζ)

)
,

(4.32)

where V (ζ) = Ṽ (β‡(ζ), ζ). Let ω = (β
′
, ζ
′
)
′

and ω̂‡ = (β̂
‡′
, ζ̂
‡′

)
′
. To show that ω̂‡ is a

consistent estimator of ω0, we need the following identification assumption.

Assumption 12. infζ: d(ζ,ζ0)≥ϑ
∥∥S‡c(ζ)

∥∥ > 0 for every ϑ > 0, where d(ζ, ζ0) is a measure of

distance between ζ and ζ0.

The following theorem shows that ω̂‡ is a consistent estimator of ω0.

Theorem 4.4. Under Assumptions 3, 4, 8, 10 and 12, as N →∞, we have ω̂‡
p−−→ ω0.

Proof. See Section C.4 in the web appendix.

Recall that Ṽ (β0, ζ0) = QC(τ0)V and Y = e−α0W
(
φ+ e−τ0MV

)
. By substituting these

two terms into S‡(ω0), we have can express S‡(ω0) in terms of linear and quadratic forms of

V :

S‡(ω0) =


β : Z

′
(τ0)V,

α : −φ′eτ0M
′ (
T
′
(τ0)− T ′(τ0)

)
QC(τ0)V − V ′

(
T
′
(τ0)− T ′(τ0)

)
QC(τ0)V,

τ : −λ′0C
′
(τ0)

(
Q4(τ0)−Q4(τ0)

)
QC(τ0)V − V ′

(
Q4(τ0)−Q4(τ0)

)
QC(τ0)V.

(4.33)

Then, the asymptotic normality of 1√
N
S‡(ω0) follows from the CLT in Lemma A.4 in the

web appendix. The next theorem shows the asymptotic distribution of ω̂‡.

Theorem 4.5. Under Assumptions 3, 4, 8, 10 and 12, as n→∞,

√
N
(
ω̂‡ − ω0

)
d−−→ N

(
0, lim

N→∞
Ψ‡−1(ω0)Ω‡(ω0)Ψ‡−1′(ω0)

)
, (4.34)

where Ψ‡(ω0) = − 1
N

E
(
∂S‡(ω0)

∂ω′

)
and Ω‡(ω0) = Var

(
1√
N
S‡(ω0)

)
are assumed to exist and

Ψ‡(ω0) is assumed to be positive definite for sufficiently large N .

Proof. See Section C.5 in the web appendix.
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We can use H‡(ω̂‡) = − 1
N
∂S‡(ω)

∂ω′
|ω=ω̂‡ to estimate Ψ‡(ω0). Let H‡ab(ω) = − 1

N
∂S‡a(ω)

∂b′
for

a, b ∈ {β, α, τ}. Then, we determine the elements of H‡(ω) in the following.

NH‡ββ(ω) = Z
′
(τ)Z(τ), NH‡βα(ω) = −Z ′(τ)Y (ζ), NH‡βτ (ω) = −Z ′(τ)M sṼ (β, ζ),

NH‡αβ(ω) = −Y ′D′(ζ)
(
T
′
(τ)− T ′(τ)

)
Z(τ),

NH‡αα(ω) = Y
′
W
′
D
′
(ζ)
(
T
′
(τ)− T ′(τ)

)
Ṽ (β, ζ) + Y

′
D
′
(ζ)
(
T
′
(τ)− T ′(τ)

)
Y (ζ),

NH‡ατ (ω) = Y
′
D
′
(ζ)

(
M
′
(
T
′
(τ)− T ′(τ)

)
+ Ṫ

′
(τ)− Ṫ

′

(τ) +
(
T
′
(τ)− T ′(τ)

)
B(τ)

)
Ṽ (β, ζ),

NH‡τβ(ω) = −Ṽ ′(β, ζ)
(
Q′4(τ)−Q′4(τ)

)
eτMZ −

(
eαWY − Zβ

)′
eτM

′ (
Q4(τ)−Q4(τ)

)
Z(τ),

NH‡τα(ω) = Y
′
W
′
D
′
(ζ)
(
Q4(τ)−Q4(τ)

)
Ṽ (β, ζ) +

(
eαWY − Zβ

)′
eτM

′ (
Q4(τ)−Q4(τ)

)
Y (ζ),

NH‡ττ (ω) =
(
eαWY − Zβ

)′
eτM

′ (
M
′ (Q4(τ)−Q4(τ)

)
+ Q̇4(τ)− Q̇4(τ) +

(
Q4(τ)−Q4(τ)

)
B(τ)

)
Ṽ ,

where Ṫ
′

(τ) = Diag
(
Ṫ
′
(τ)QC(τ) + T

′
(τ)Q̇C(τ)

)
Diag (QC(τ))−1−T (τ) Diag

(
Q̇C(τ)

)
Diag (QC(τ))−1,

Ṫ
′
(τ) = T

′
(τ)M

′−M ′
T
′
(τ), Q̇4(τ) = Diag

(
Q̇4(τ)

)
Diag (QC(τ))−1−Q4(τ) Diag

(
Q̇C(τ)

)
Diag (QC(τ))−1,

Q̇4(τ) = Q̇C(τ)MQC(τ)+QC(τ)MQ̇C(τ) and Q̇C(τ) = −
(
QC(τ)MPC(τ)+PC(τ)M

′
QC(τ)

)
.

As shown in the proof of Theorem 4.5, H‡(ω̂‡) is a consistent estimator of Ψ‡(ω0).

For Ω‡(ω0), we first derive its closed-form expression using Lemma A.2 in the web ap-

pendix:

NΩ‡βω(ω0) = N
(

Ω‡ββ(ω0), Ω‡βα(ω0), Ω‡βτ (ω0)
)

=
(
Z
′
(τ0)ΣZ(τ0), −Z ′(τ0)ΣT (τ0)eτ0Mφ, −Z ′(τ0)ΣQ(τ0)C(τ0)λ0

)
,

NΩ‡αα(ω0) = φ
′
eτ0M

′
T
′

(τ0)ΣT (τ0)eτ0Mφ+ tr
(

ΣT (τ0)ΣT
s
(τ0)
)
,

NΩ‡ατ (ω0) = φ
′
eτ0M

′
T
′

(τ0)ΣQ(τ0)C(τ0)λ0 + tr
(

ΣT (τ0)ΣQs(τ0)
)
,

NΩ‡ττ (ω0) = λ
′

0C
′
(τ0)Q

′

(τ0)ΣQ(τ0)C(τ0)λ0 + tr
(

ΣQ(τ0)ΣQs(τ0)
)
,

where T (τ0) = QC(τ0)
(
T (τ0)− T (τ0)

)
and Q(τ0) = QC(τ0)

(
Q′4(τ0)−Q′4(τ0)

)
. For conve-

nience of exposition, let us write Ω‡(ω0) as Ω‡(ω0, λ0,Σ). Let λ̂(β̂
‡
, ζ̂
‡
), and Ω‡(ω̂‡, λ̂

‡
,Σ) be

the plug-in estimator of Ω‡(ω0) given Σ. This plug-in estimator has bias as shown in the

following following theorem.

Theorem 4.6. Under Assumptions 3, 4, 8, 10 and 12, we have

Ω‡(ω̂‡, λ̂
‡
,Σ) = Ω‡(ω0, λ0,Σ) + Bias‡λ(τ0,Σ) + op(1),
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where Bias‡λ(τ0,Σ) is an (k + 2)× (k + 2) matrix given as

Bias‡λ(τ0,Σ) =

0k×k 0k×1 0k×1

01×k Bias‡λ,αα(τ0,Σ) Bias‡λ,ατ (τ0,Σ)

01×k Bias‡λ,τα(τ0,Σ) Bias‡λ,ττ (τ0,Σ)

 ,

with

Bias‡λ,αα(τ0,Σ) =
1

N
tr
(

ΣPC(τ0)T
′

(τ0)ΣT (τ0)PC(τ0)
)
,

Bias‡λ,ατ (τ0,Σ) = Bias‡λ,τα(τ0,Σ) =
1

N
tr
(

ΣPC(τ0)Q
′

(τ0)ΣT (τ0)PC(τ0)
)
,

Bias‡λ,ττ (τ0,Σ) =
1

N
tr
(

ΣPC(τ0)Q
′

(τ0)ΣQ(τ0)PC(τ0)
)
.

Proof. See Section C.6 in the web appendix.

Using Lemma A.7 in the web appendix, we can show that Bias‡λ(τ0,Σ) = O(1/min{n1, . . . , nR}).
As in the case of homoskedastic setting, the bias becomes negligible if all group sizes are

large. However, in settings with some fixed group sizes, the bias correction is necessary

for valid inference. It is clear that the plug-in estimator of Ω‡(ω0, λ0,Σ) also requires con-

sistent estimators for the terms involving Σ. Since Ṽ = Ṽ (β0, ζ0) = QC(τ0)V , we have

E(Ṽ � Ṽ ) = (QC(τ0)�QC(τ0)) (σ2
1, . . . , σ

2
n)
′
, where � denotes the Hadamard product. This

implies an estimator for (σ2
1, . . . , σ

2
n)
′

as

(σ̂2
1, . . . , σ̂

2
n)
′
=
(
QC(τ̂ ‡)�QC(τ̂ ‡)

)−
(V̂ � V̂ ), (4.35)

where A− denotes the generalized inverse of A and V̂ = V̂ (β̂
‡
, ζ̂
‡
) = QC(τ̂ ‡)eτ̂

‡M(eα̂
‡WY −

Zβ̂
‡
). Note that elements of Ω‡(ω0) takes forms of either tr(ΣC) or tr(ΣAΣB). In the next

theorem, we show the effect of replacing the unknown Σ by Σ̂ = Diag(σ̂2
1, . . . , σ̂

2
n) in tr(ΣC)

and tr(ΣAΣB).

Theorem 4.7. Assume Π(τ) = (QC(τ)�QC(τ))−1 exists for τ in a neighborhood of τ0 and is

bounded in row and column sum norms. Let A and B be two n×n matrices that are bounded

in row and column sum norms with zero diagonal elements. Let C be an n× n matrix that

has uniformly bounded diagonal elements. Then,

(i) 1
N

tr
(

Σ̂C
)
− 1

N
tr (ΣC) = op(1),

(ii) 1
N

tr
(

Σ̂AΣ̂B
)
− 1

N
tr (ΣAΣB)− 2

N
tr ((A�B)Π(τ0)Λ(Σ)Π(τ0)) = op(1),
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where Λ(Σ) = (QC(τ0)ΣQC(τ0))� (QC(τ0)ΣQC(τ0)).

Proof. See Section C.7 in the web appendix.

Our results in Theorems 4.6 and 4.7 suggest that the bias corrected estimator of Ω‡(ω0)

is given by

Ω̂
‡

= Ω‡(ω̂‡, λ̂
‡
, Σ̂)− Bias‡λ(τ̂

‡, Σ̂)− Bias‡Σ(τ̂ ‡, Σ̂). (4.36)

The first term Bias‡λ(τ̂
‡, Σ̂) is the plug-in estimator of Bias‡λ(τ0,Σ) given in Theorem 4.6.

The second term Bias‡Σ(τ̂ ‡, Σ̂) arises because of replacing Σ with Σ̂ and is an (k+2)× (k+2)

matrix given as

Bias‡Σ(τ̂ ‡, Σ̂) =

0k×k 0k×1 0k×1

01×k Bias‡Σ,αα(τ̂ ‡, Σ̂) Bias‡Σ,ατ (τ̂
‡, Σ̂)

01×k Bias‡Σ,τα(τ̂ ‡, Σ̂) Bias‡Σ,ττ (τ̂
‡, Σ̂)

 ,

where

Bias‡Σ,αα(τ̂ ‡, Σ̂) =
2

N
tr
((
T (τ̂ ‡)� T s(τ̂ ‡)− PC(τ̂ ‡)T

′

(τ̂ ‡)� T (τ̂ ‡)PC(τ̂ ‡)
)

Π(τ̂ ‡)Λ(Σ̂)Π(τ̂ ‡)
)
,

Bias‡Σ,ατ (τ̂
‡, Σ̂) =

2

N
tr
((
T (τ̂ ‡)�Qs(τ̂ ‡)− PC(τ̂ ‡)Q

′

(τ̂ ‡)� T (τ0)PC(τ̂ ‡)
)

Π(τ̂ ‡)Λ(Σ̂)Π(τ̂ ‡)
)
,

Bias‡Σ,ττ (τ̂
‡, Σ̂) =

2

N
tr
((
Q(τ̂ ‡)�Qs(τ̂ ‡)− PC(τ̂ ‡)Q

′

(τ̂ ‡)�Q(τ̂ ‡)PC(τ̂ ‡)
)

Π(τ̂ ‡)Λ(Σ̂)Π(τ̂ ‡)
)
,

and Λ(Σ̂) =
(
QC(τ̂ ‡)Σ̂QC(τ̂ ‡)

)
�
(
QC(τ̂ ‡)Σ̂QC(τ̂ ‡)

)
.

5 Simulations

In this section, we investigate the finite sample properties of our proposed estimation and

inference methodologies through an extensive simulation study. The data generating process

takes the following form:

Yr = e−α0Wr
(
X1rβ10 +X2rβ20 +WrX1rβ30 +WrX2rβ40 + λr01nr + e−τ0MrVr

)
, (5.1)

for r = 1, 2, . . . , R, where X1r and X2r are the nr×1 vectors of observed characteristics whose

elements are independently generated from the uniform distribution U(1, 5). The associated

parameters are set to (β10, β20, β30, β40)
′

= (1.2, 0.6,−0.4, 0.1)
′
. For the endogenous and

correlated effects, we consider α0 ∈ {−2, 0, 2} and τ0 ∈ {−1, 0, 1}. We generate the group

fixed effects, λr0’s, independently from the standard normal distribution.
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We set R = 30 and allow nr to vary across these 30 groups by randomly assigning a

value from the set of integers 15, 16, . . . , 20 to each group size. Therefore, the total number

of observations can vary between 450 and 600. Following Liu and Lee (2010), we generate

Wr in two steps. First, we draw an integer value ϑir uniformly from the set 1, 2, 3, 4, 5.

Then, if ϑir + i ≤ nr, the (i + 1)th, . . . , (i + ϑir)th elements of the ith row of Wr are set

to one, and the rest of the elements in the ith row are set to zero. On the other hand, if

ϑir + i > nr, the first (ϑir + i−nr) entries of the ith row are set to one, and the others are set

to zero. We row-normalize Wr generated in this way and set W = Blkdiag
(
W1, . . . ,WR

)
. We

generate M = Blkdiag
(
M1, . . . ,MR

)
using the same method but a different random number

generator, ensuring that M 6= W .

We specify the disturbance terms as vir = ωirεir, where ωir’s are the variance terms and

εir’s are independent and identically distributed random variables with a mean of 0 and a

variance of 1. We consider three cases for the distribution of εir: (i) εir ∼ N(0, 1), (ii)

εir ∼ Gamma(2, 1), where Gamma(a, b) is the standardized gamma distribution with shape

and scale parameters a and b, and (iii) εir ∼ χ2
3, where χ2

ν is the standardized chi-squared

distribution with ν degrees of freedom.

In the homoskedastic case, we set ωir = 1 in all scenarios. In the heteroskedastic case, we

consider three scenarios for ωir. In the first scenario (Case 1), if the number of peers for the

ith entity in the rth group is smaller than or equal to the average number of peers in that

group, ωir is set to the number of peers. Otherwise, it is set to the square of the inverse of the

number of peers. Thus, this scenario allows heteroskedasticity to vary across i and r. In the

second scenario (Case 2), if the group size for the rth group is greater than the average group

size in the sample, ωir is set to the group size. Otherwise, it is set to the square of the inverse

of the group size. Therefore, heteroskedasticity varies across groups but does not vary within

a group. In the last scenario (Case 3), we set ωir to nr(|X1,ir|+|X2,ir|)/
∑nr

j=1(|X1,jr|+|X2,jr|),
allowing heteroskedasticity to vary across i and r. In all heteroskedastic scenarios, we only

consider εir ∼ N(0, 1).

We set the number of repetitions to 1000 in all cases. We report bias, empirical standard

deviation, average estimated asymptotic standard error, and empirical coverage ratio (at

the 5% significance level). We present all simulation results in 16 tables. We consider the

simulation results in Tables 1–4 and leave the rest to Section D in the web appendix. We

summarize the salient features of the simulation results below.

1. Table 1 presents the simulation results for the QMLE of α0, τ0, and β10 under ho-

moskedasticity. The first, second, and third panels illustrate the performance of α̂,

τ̂ , and β̂1, respectively. The QMLE reports negligible bias for all parameters, and its

performance does not depend on the type of error distributions. The average estimated
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asymptotic standard errors closely match the corresponding empirical standard devia-

tions in all cases. Consequently, the empirical coverage ratios are close to the nominal

value of 95% in all cases. Our results also show that the QMLE performs satisfactorily

for β2, β3 and β4 (see Table D.1 in the web appendix). The simulation results for

the heteroskedastic cases are presented in Tables D.2 and D.3 in the web appendix.

These results reveal that although the QMLE performs satisfactorily in terms of bias,

it reports empirical coverage rates that are significantly below 95%, especially in the

case of α0 and τ0. Overall, consistent with our theoretical results, the QMLE performs

satisfactorily under homoskedasticity. However, under heteroskedasticity, it may re-

port smaller estimated asymptotic standard errors than the corresponding empirical

standard deviations.

2. Table 2 presents the simulation results for the RME based on the transformation ap-

proach under heteroskedasticity. Overall, these results show that the RME performs

satisfactorily for α0, τ0, and β10 in all cases, except for some instances in the first

two panels, where the empirical coverage rates fall slightly below 95% level. Its per-

formance for β20, β30, and β40 is excellent (see Table D.6 in the web appendix). We

also investigate the performance of the RME under the homoskedastic cases, and these

results are presented in Tables D.4 and D.5 in the web appendix. These results also

indicate that the RME performs satisfactorily.

3. The simulation results for the ME based on the direct approach under homoskedasticity

are presented in Table 3. In terms of bias, the ME performs satisfactorily in all cases.

It reports empirical coverage rates that are close to the nominal value of 95% in all

cases. Its performance for β20, β30 and β40 is excellent as can be seen from the results in

Table D.7 in the web appendix. The simulation results for the heteroskedastic cases are

presented in Tables D.8 and D.9 in the web appendix. These results indicate that its

performance in terms of bias is not affected by heteroskedasticity. However, it reports

empirical coverage rates significantly below the 95% nominal level in the cases of α0

and τ0 (see Table D.8).

4. Finally, we consider the simulation results for the RME based on the direct approach.

The results in Table 4 demonstrate that this estimator performs satisfactorily under

all heteroskedastic cases. Its performance for β20, β30, and β40 under heteroskedasticity

is evident from the simulation results presented in Table D.12 in the web appendix,

which also show satisfactory performance. The simulation results for the homoskedastic

cases are displayed in Tables D.10 and D.11 in the web appendix. Overall, these results

indicate that the RME performs well in all homoskedastic cases as well.
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Table 1: Transformation approach: The QMLE results for α̂, τ̂ and β̂1 under homoskedasticity

Normal Gamma Chi-squared

τ0 = −1 τ0 = 0 τ0 = 1 τ0 = −1 τ0 = 0 τ0 = 1 τ0 = −1 τ0 = 0 τ0 = 1

Results for α̂

α0 = −2 0.0070 0.0013 0.0015 0.0019 0.0032 −0.0003 0.0054 0.0030 0.0025
0.0585 0.0651 0.0393 0.0602 0.0688 0.0402 0.0577 0.0675 0.0377
0.0576 0.0653 0.0377 0.0575 0.0655 0.0386 0.0575 0.0654 0.0385
0.939 0.947 0.938 0.934 0.938 0.949 0.945 0.943 0.958

α0 = 0 0.0041 0.0056 −0.0005 0.0033 0.0015 0.0011 0.0057 0.0060 0.0040
0.0594 0.0678 0.0378 0.0566 0.0681 0.0395 0.0584 0.0703 0.0412
0.0575 0.0657 0.0376 0.0574 0.0653 0.0385 0.0576 0.0656 0.0385
0.942 0.937 0.951 0.953 0.937 0.943 0.934 0.932 0.934

α0 = 2 0.0043 0.0066 0.0000 0.0046 0.0004 0.0028 0.0032 0.0058 0.0013
0.0566 0.0694 0.0386 0.0589 0.0649 0.0386 0.0610 0.0695 0.0405
0.0575 0.0655 0.0377 0.0576 0.0654 0.0386 0.0575 0.0656 0.0385
0.955 0.928 0.941 0.943 0.948 0.956 0.932 0.938 0.936

Results for τ̂

α0 = −2 −0.0120 0.0034 0.0097 −0.0060 −0.0011 0.0098 −0.0120 0.0012 0.0063
0.0758 0.0753 0.0644 0.0728 0.0756 0.0662 0.0780 0.0756 0.0666
0.0731 0.0729 0.0638 0.0730 0.0731 0.0643 0.0730 0.0731 0.0642
0.935 0.939 0.938 0.949 0.947 0.933 0.924 0.943 0.938

α0 = 0 −0.0081 0.0007 0.0130 −0.0090 0.0004 0.0095 −0.0085 −0.0028 0.0059
0.0776 0.0746 0.0656 0.0758 0.0739 0.0684 0.0759 0.0782 0.0674
0.0730 0.0731 0.0637 0.0730 0.0731 0.0643 0.0730 0.0732 0.0642
0.933 0.949 0.945 0.934 0.948 0.936 0.941 0.947 0.940

α0 = 2 −0.0101 0.0027 0.0081 −0.0051 0.0008 0.0079 −0.0081 −0.0026 0.0054
0.0737 0.0750 0.0666 0.0756 0.0735 0.0654 0.0781 0.0762 0.0656
0.0730 0.0730 0.0638 0.0730 0.0731 0.0643 0.0730 0.0732 0.0642
0.952 0.944 0.942 0.940 0.946 0.952 0.919 0.937 0.942

Results for β̂1

α0 = −2 0.0000 −0.0005 0.0005 0.0004 0.0002 −0.0017 0.0000 −0.0006 0.0001
0.0283 0.0320 0.0276 0.0269 0.0311 0.0274 0.0277 0.0318 0.0277
0.0274 0.0316 0.0273 0.0273 0.0315 0.0272 0.0274 0.0315 0.0274
0.942 0.942 0.949 0.958 0.950 0.946 0.943 0.947 0.948

α0 = 0 0.0012 0.0003 −0.0006 −0.0011 −0.0002 0.0005 −0.0001 0.0000 0.0009
0.0273 0.0324 0.0277 0.0284 0.0310 0.0274 0.0277 0.0334 0.0281
0.0274 0.0316 0.0273 0.0274 0.0315 0.0272 0.0274 0.0315 0.0273
0.949 0.939 0.952 0.939 0.953 0.940 0.949 0.934 0.937

α0 = 2 −0.0001 0.0008 0.0007 −0.0004 −0.0001 −0.0011 0.0008 0.0008 −0.0018
0.0266 0.0322 0.0268 0.0283 0.0321 0.0277 0.0275 0.0318 0.0278
0.0274 0.0315 0.0273 0.0275 0.0316 0.0273 0.0273 0.0315 0.0274
0.957 0.946 0.964 0.943 0.949 0.944 0.939 0.938 0.942

Notes: In each (α0, τ0) combination, the first row gives the bias, the second row the empirical standard
deviation, the third row the average asymptotic standard error, and the last row the 95% empirical
coverage rate.
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Table 2: Transformation approach: The RME results for α̂, τ̂ and β̂1 under heteroskedasticity

Case 1 Case 2 Case 3

τ0 = −1 τ0 = 0 τ0 = 1 τ0 = −1 τ0 = 0 τ0 = 1 τ0 = −1 τ0 = 0 τ0 = 1

Results for α̂

α0 = −2 −0.0013 −0.0012 0.0017 0.0026 0.0032 0.0001 0.0003 0.0036 0.0016
0.0692 0.0926 0.0627 0.0953 0.1161 0.0798 0.0652 0.0837 0.0564
0.0681 0.0870 0.0551 0.0873 0.1108 0.0728 0.0619 0.0772 0.0522
0.949 0.933 0.923 0.929 0.944 0.929 0.935 0.924 0.935

α0 = 0 −0.0032 0.0047 −0.0023 0.0033 −0.0049 0.0022 0.0018 0.0000 −0.0017
0.0681 0.0894 0.0574 0.0911 0.1145 0.0829 0.0646 0.0813 0.0565
0.0684 0.0869 0.0543 0.0880 0.1104 0.0734 0.0617 0.0769 0.0523
0.953 0.944 0.936 0.947 0.934 0.921 0.937 0.936 0.929

α0 = 2 −0.0034 −0.0006 0.0017 0.0032 −0.0015 0.0042 0.0016 −0.0011 0.0040
0.0683 0.0888 0.0588 0.0918 0.1120 0.0755 0.0634 0.0808 0.0570
0.0689 0.0869 0.0559 0.0878 0.1099 0.0738 0.0617 0.0777 0.0522
0.956 0.948 0.933 0.930 0.929 0.940 0.941 0.937 0.922

Results for τ̂

α0 = −2 −0.0050 0.0038 0.0126 −0.0050 0.0003 0.0140 −0.0058 0.0015 0.0101
0.0913 0.0955 0.0913 0.1077 0.1133 0.1039 0.0794 0.0838 0.0768
0.0875 0.0921 0.0855 0.1026 0.1074 0.0961 0.0767 0.0793 0.0742
0.949 0.934 0.929 0.943 0.933 0.910 0.944 0.932 0.943

α0 = 0 −0.0020 0.0023 0.0112 −0.0070 0.0042 0.0141 −0.0059 0.0013 0.0123
0.0919 0.0980 0.0923 0.1066 0.1122 0.1065 0.0773 0.0890 0.0776
0.0876 0.0918 0.0857 0.1026 0.1069 0.0970 0.0768 0.0794 0.0738
0.936 0.931 0.933 0.941 0.937 0.923 0.950 0.908 0.935

α0 = 2 −0.0040 0.0043 0.0140 −0.0059 0.0043 0.0094 −0.0022 0.0060 0.0081
0.0901 0.0970 0.0907 0.1104 0.1132 0.1047 0.0802 0.0832 0.0780
0.0881 0.0918 0.0865 0.1027 0.1069 0.0966 0.0770 0.0790 0.0742
0.950 0.918 0.931 0.922 0.929 0.921 0.950 0.927 0.925

Results for β̂1

α0 = −2 −0.0004 −0.0007 0.0008 −0.0003 0.0010 0.0000 −0.0003 0.0015 −0.0005
0.0295 0.0337 0.0279 0.0277 0.0340 0.0297 0.0314 0.0398 0.0323
0.0279 0.0320 0.0271 0.0275 0.0320 0.0286 0.0306 0.0377 0.0314
0.940 0.933 0.940 0.944 0.943 0.939 0.941 0.930 0.939

α0 = 0 0.0006 −0.0007 0.0010 −0.0018 −0.0009 −0.0006 0.0003 −0.0004 −0.0012
0.0288 0.0330 0.0277 0.0283 0.0327 0.0301 0.0331 0.0413 0.0329
0.0278 0.0319 0.0272 0.0275 0.0319 0.0285 0.0306 0.0374 0.0312
0.939 0.944 0.955 0.942 0.940 0.940 0.936 0.931 0.936

α0 = 2 −0.0018 −0.0001 −0.0007 0.0007 0.0002 −0.0002 0.0001 0.0005 0.0009
0.0291 0.0322 0.0287 0.0288 0.0348 0.0293 0.0322 0.0386 0.0329
0.0279 0.0320 0.0274 0.0277 0.0321 0.0287 0.0306 0.0373 0.0313
0.938 0.950 0.939 0.942 0.928 0.952 0.935 0.944 0.940

Notes: In each (α0, τ0) combination, the first row gives the bias, the second row the empirical standard
deviation, the third row the average asymptotic standard error, and the last row the 95% empirical
coverage rate.
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Table 3: Direct approach: The ME results for α̂, τ̂ and β̂1 under homoskedasticity

Normal Gamma Chi-squared

τ0 = −1 τ0 = 0 τ0 = 1 τ0 = −1 τ0 = 0 τ0 = 1 τ0 = −1 τ0 = 0 τ0 = 1

Results for α̂

α0 = −2 0.0069 0.0018 0.0012 0.0017 0.0032 −0.0020 0.0054 0.0034 0.0017
0.0586 0.0654 0.0516 0.0603 0.0696 0.0538 0.0576 0.0685 0.0523
0.0595 0.0674 0.0521 0.0588 0.0671 0.0528 0.0595 0.0676 0.0529
0.947 0.950 0.949 0.943 0.934 0.942 0.945 0.943 0.946

α0 = 0 0.0041 0.0056 0.0001 0.0034 0.0015 0.0007 0.0054 0.0057 0.0041
0.0595 0.0680 0.0529 0.0569 0.0684 0.0520 0.0588 0.0703 0.0546
0.0597 0.0674 0.0528 0.0589 0.0673 0.0526 0.0601 0.0677 0.0532
0.949 0.940 0.947 0.953 0.936 0.953 0.945 0.940 0.943

α0 = 2 0.0042 0.0069 0.0011 0.0047 0.0005 0.0035 0.0031 0.0062 −0.0005
0.0570 0.0702 0.0538 0.0590 0.0650 0.0512 0.0610 0.0698 0.0527
0.0596 0.0683 0.0524 0.0600 0.0672 0.0529 0.0595 0.0676 0.0526
0.951 0.932 0.943 0.940 0.959 0.965 0.941 0.931 0.950

Results for τ̂

α0 = −2 −0.0118 0.0033 0.0085 −0.0053 −0.0009 0.0101 −0.0118 0.0014 0.0054
0.0759 0.0758 0.0673 0.0730 0.0750 0.0701 0.0782 0.0762 0.0698
0.0756 0.0752 0.0696 0.0748 0.0753 0.0704 0.0754 0.0756 0.0703
0.944 0.943 0.958 0.951 0.943 0.942 0.926 0.948 0.950

α0 = 0 −0.0079 0.0010 0.0109 −0.0086 0.0010 0.0080 −0.0081 −0.0020 0.0042
0.0776 0.0747 0.0713 0.0759 0.0742 0.0718 0.0762 0.0785 0.0707
0.0756 0.0760 0.0701 0.0748 0.0755 0.0700 0.0756 0.0759 0.0706
0.939 0.958 0.949 0.943 0.955 0.941 0.947 0.934 0.947

α0 = 2 −0.0097 0.0027 0.0056 −0.0048 0.0019 0.0056 −0.0077 −0.0025 0.0047
0.0740 0.0756 0.0730 0.0755 0.0735 0.0686 0.0782 0.0760 0.0685
0.0754 0.0761 0.0698 0.0754 0.0756 0.0698 0.0755 0.0753 0.0701
0.949 0.948 0.929 0.949 0.949 0.949 0.932 0.946 0.953

Results for β̂1

α0 = −2 0.0000 −0.0005 0.0005 0.0004 0.0002 −0.0017 0.0000 −0.0006 0.0002
0.0283 0.0320 0.0278 0.0269 0.0311 0.0276 0.0277 0.0318 0.0276
0.0275 0.0317 0.0276 0.0273 0.0316 0.0275 0.0275 0.0316 0.0275
0.943 0.939 0.950 0.957 0.955 0.940 0.952 0.946 0.946

α0 = 0 0.0012 0.0003 −0.0006 −0.0011 −0.0002 0.0006 −0.0001 0.0000 0.0009
0.0273 0.0324 0.0279 0.0284 0.0311 0.0276 0.0277 0.0334 0.0284
0.0276 0.0317 0.0276 0.0274 0.0316 0.0275 0.0275 0.0316 0.0276
0.943 0.941 0.951 0.942 0.955 0.942 0.949 0.937 0.940

α0 = 2 −0.0001 0.0008 0.0009 −0.0004 −0.0001 −0.0009 0.0008 0.0008 −0.0018
0.0266 0.0322 0.0269 0.0283 0.0321 0.0278 0.0275 0.0318 0.0279
0.0276 0.0317 0.0276 0.0277 0.0318 0.0275 0.0276 0.0316 0.0277
0.959 0.944 0.967 0.939 0.946 0.942 0.946 0.942 0.933

Notes: In each (α0, τ0) combination, the first row gives the bias, the second row the empirical standard
deviation, the third row the average asymptotic standard error, and the last row the 95% empirical
coverage rate.
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Table 4: Direct approach: The RME results for α̂, τ̂ and β̂1 under heteroskedasticity

Case 1 Case 2 Case 3

τ0 = −1 τ0 = 0 τ0 = 1 τ0 = −1 τ0 = 0 τ0 = 1 τ0 = −1 τ0 = 0 τ0 = 1

Results for α̂

α0 = −2 0.0033 0.0046 0.0021 0.0077 0.0082 0.0005 0.0023 0.0013 0.0026
0.0717 0.0828 0.0546 0.0782 0.0860 0.0602 0.0588 0.0717 0.0509
0.0713 0.0829 0.0544 0.0762 0.0845 0.0571 0.0588 0.0677 0.0530
0.941 0.956 0.947 0.924 0.942 0.929 0.951 0.929 0.955

α0 = 0 0.0026 0.0026 0.0052 0.0056 0.0053 0.0039 0.0037 0.0005 −0.0016
0.0735 0.0858 0.0566 0.0768 0.0832 0.0589 0.0595 0.0672 0.0533
0.0709 0.0824 0.0549 0.0760 0.0824 0.0572 0.0584 0.0674 0.0525
0.933 0.939 0.951 0.935 0.940 0.948 0.942 0.932 0.943

α0 = 2 −0.0032 0.0056 0.0009 0.0079 0.0087 0.0056 0.0032 0.0055 0.0023
0.0699 0.0810 0.0546 0.0779 0.0829 0.0602 0.0584 0.0686 0.0525
0.0718 0.0829 0.0549 0.0763 0.0830 0.0575 0.0586 0.0675 0.0527
0.946 0.949 0.941 0.931 0.947 0.946 0.940 0.937 0.957

Results for τ̂

α0 = −2 −0.0055 0.0007 0.0105 −0.0104 −0.0042 0.0093 −0.0085 0.0026 0.0078
0.0968 0.0948 0.0852 0.1027 0.0969 0.0859 0.0753 0.0738 0.0687
0.0898 0.0912 0.0844 0.0978 0.0974 0.0868 0.0759 0.0767 0.0709
0.924 0.927 0.943 0.936 0.946 0.945 0.941 0.953 0.951

α0 = 0 −0.0073 0.0011 0.0033 −0.0065 −0.0012 0.0080 −0.0079 0.0036 0.0115
0.0938 0.0958 0.0866 0.0975 0.0969 0.0881 0.0727 0.0758 0.0707
0.0898 0.0916 0.0844 0.0967 0.0963 0.0871 0.0755 0.0767 0.0707
0.938 0.927 0.946 0.938 0.949 0.942 0.949 0.955 0.946

α0 = 2 −0.0038 0.0018 0.0113 −0.0107 −0.0044 0.0053 −0.0015 0.0020 0.0074
0.0942 0.0946 0.0814 0.0952 0.0941 0.0901 0.0761 0.0781 0.0706
0.0900 0.0911 0.0849 0.0969 0.0965 0.0875 0.0758 0.0765 0.0709
0.923 0.942 0.946 0.946 0.956 0.942 0.943 0.953 0.961

Results for β̂1

α0 = −2 0.0000 −0.0009 0.0007 −0.0001 0.0015 0.0001 −0.0006 0.0013 −0.0004
0.0298 0.0329 0.0286 0.0278 0.0341 0.0287 0.0314 0.0395 0.0316
0.0293 0.0330 0.0291 0.0287 0.0326 0.0281 0.0323 0.0390 0.0326
0.947 0.944 0.953 0.953 0.946 0.940 0.958 0.946 0.954

α0 = 0 0.0001 −0.0011 0.0012 −0.0015 −0.0005 0.0001 0.0000 −0.0004 −0.0008
0.0299 0.0335 0.0293 0.0292 0.0324 0.0283 0.0331 0.0414 0.0337
0.0292 0.0331 0.0291 0.0287 0.0325 0.0280 0.0323 0.0388 0.0324
0.935 0.941 0.946 0.944 0.948 0.945 0.942 0.944 0.929

α0 = 2 −0.0014 0.0007 −0.0006 0.0009 0.0006 −0.0003 0.0002 0.0006 0.0014
0.0289 0.0325 0.0295 0.0298 0.0344 0.0283 0.0332 0.0387 0.0330
0.0295 0.0330 0.0289 0.0288 0.0327 0.0281 0.0323 0.0386 0.0325
0.956 0.952 0.952 0.947 0.927 0.954 0.940 0.953 0.952

Notes: In each (α0, τ0) combination, the first row gives the bias, the second row the empirical standard
deviation, the third row the average asymptotic standard error, and the last row the 95% empirical
coverage rate.
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6 Application to the Add Health data

In this section, we use the Add Health data to study the effects of peers on academic achieve-

ment, participation in recreational activities, and smoking. The Add Health data sets were

collected in three waves from adolescents in grades 7 to 12 across 132 public and private

schools and include variables on demographic background, academic performance, health-

related behaviors, and friendship networks of participants. We use data from the first wave,

which is an in-school survey covering 90,000 students. Our first outcome variable is the

grade point average (GPA), computed from several subjects, including English or language

arts, history or social science, mathematics, and science. The second variable is an index of

participation in recreational activities, such as educational, artistic, and sports organizations

and clubs. As in Bramoullé et al. (2009), this variable takes values from 0 to 4: if the num-

ber of recreational activities a student participates in is fewer than 4, it reflects the actual

number of activities; if it is 4 or more, the value is capped at 4. The third outcome variable

is smoking, measured by the number of smoking days per month.

Following Lin (2010), we formulate groups at the school-grade level, resulting in a total of

792 groups. The data include information on the five male and five female friends nominated

by each respondent. We use these friendship nominations to construct the network matrix.

Specifically, we set the (i, j)th element of Wr to 1 if the ith student in group r nominated

the jth student as a friend; otherwise, it is set to 0. We then set Mr = Wr for r = 1, . . . , R.

We do not row-normalize Wr because the parameter space of α and τ in our setting is not

constrained to any specific interval, allowing the model to have a reduced form. This feature

of our model contrasts with the spatial autoregressive network models considered in the

literature (Bramoullé et al., 2009, 2020; Hsieh and Lee, 2016; Lee, 2007; Lee et al., 2010;

Lin, 2010, 2015; Liu and Lee, 2010).

We consider the following explanatory variables (Boucher et al., 2024; Bramoullé et al.,

2009; Hsieh and Lee, 2016; Lin, 2010, 2015): age, gender dummy variable (female is the base

category), race dummy variables (white is the base category), a dummy variable indicating

whether the respondent lives with both parents, dummy variables for mother’s education

(high-school is the base category), a dummy variable indicating whether the mother is on

welfare, and the mother’s occupation (staying home is the base category). We consider the

same set of explanatory variables for the contextual variables. Due to missing observations

and computational constraints, we focus on a sample that includes groups with more than

11 students and fewer than 80 students.

The summary statistics for the entire sample and our final sample are presented in Table 5.

We observe that the first two sample moments of our final sample are close to those of the
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entire sample for most variables. The average GPA is around 2.91, the average participation

in recreational activities is 2.23, and the average number of smoking days per month is

approximately 3.34. In our sample, the mean age is 14.82; 48% are male, 24.5% are Black,

3.4% are Asian, 9.2% are Hispanic, and 6.4% are from other races. The percentage of

students living with both parents is 72%. We have four categories for mother’s education

level, with the high-school level being the base category: 10% of respondents’ mothers have

less than a high-school education, 40.8% have more than a high-school education, and 9.9%

of respondents’ mothers’ education is missing. The percentage of respondents whose mothers

are on welfare is around 11%. Finally, there are four categories for the mother’s occupation,

with staying home being the base category: 8.7% of respondents’ mothers’ occupations

information are missing, 25.4% of respondents’ mothers have professional jobs, and 35%

have other jobs.4

For the three outcome variables, we estimate our model in (2.9) only by the ME and

RME from the direct approach. Note that since the network matrices Wr and Mr are

not row-normalized, we can not use the QMLE and the RME from the transformation

approach. For each outcome variable, we also report a pseudo R2 measure computed by

R2 = 1− V̂
′

V̂ /((Y − Y )
′
(Y − Y )), where V̂ = eτ̂M(eα̂WY − Zβ̂ − Cλλ̂).

The estimation results for GPA are presented in Table 6. The reported pseudo R2 mea-

sures based on the ME and RME are 0.226 and 0.225, respectively. The estimates of α from

the ME and RME are −0.0110 and −0.0030, respectively, both statistically insignificant. In

contrast, the estimates of τ are −0.0876 and −0.1024, respectively, and statistically signifi-

cant. These results suggest that, after controlling for own effects, contextual effects, group

fixed effects, correlation in unobserved factors, and heteroskedasticity in the error terms,

there is no statistical evidence that a student’s GPA is influenced by the sum of their peers’

GPAs. However, the statistically significant estimates of τ indicate that unobserved factors

remain correlated, even after accounting for these controls.

The ME and RME provide similar estimates for both own and contextual effects. For

the own effects, the estimated coefficients for age and gender (male) are negative and sta-

tistically significant, indicating that older and male students tend to perform worse. The

estimated coefficients for the race categories are statistically significant for Black, Asian,

and Hispanic dummy variables. These estimates suggest that Black and Hispanic students

score lower than White students, while Asian students score higher. Both estimators report

positive and statistically significant coefficients for the dummy variable indicating whether

the respondent lives with both parents, suggesting that students living with both parents

4There are 15 occupation categories. Following Lin (2010), we combine these categories into four categories
along with the missing indicators.
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perform relatively better. Regarding the mother’s education dummy variables, both estima-

tors report negative and statistically significant estimates for students whose mothers have

less than a high school education, and positive, statistically significant estimates for those

whose mothers have education levels above high school. This suggests that students whose

mothers have less than a high school education tend to have lower GPAs, while those whose

mothers have more education tend to have higher GPAs. Both estimators report positive and

statistically significant estimates for the dummy variable indicating whether the respondent’s

mother is on welfare, suggesting that students with mothers on welfare tend to have higher

GPAs. Finally, for the mother’s occupation categories, both estimators report positive and

statistically significant estimates for the professional job category.

Regarding the contextual effects, both estimators report statistically significant estimates

for only two dummy variables: whether the respondent lives with both parents and whether

the respondent’s mother has less than a high school education. The estimated coefficient

for living with both parents is positive, while the coefficient for the mother’s education level

being less than high school is negative. These results suggest that students whose peers live

with both parents tend to have higher GPAs, while students whose peers’ mothers have less

than a high school education tend to have lower GPAs.

The estimation results on participating in recreational activities are presented in Table 7.

For this outcome variable, the reported pseudo R2 measures based on the ME and RME

are 0.175 and 0.176, respectively. The estimates of the endogenous effect α are 0.0146

from the ME and 0.0228 from the RME. The first estimate is statistically insignificant,

while the second is significant only at the 10% significance level. On the other hand, both

estimators report negative and statistically significant estimates for τ . These results suggest

that, after controlling for own effects, contextual effects, group fixed effects, correlation in

unobserved factors, and heteroskedasticity in the error terms, there is no statistical evidence

for endogenous peer effects on participating in recreational activities. Based on a different

model specification, Bramoullé et al. (2009) also report an estimate of the endogenous effect

that is only significant at the 10% significance level. On the other hand, the statistically

significant estimates of τ indicate that unobserved factors affecting participation remain

correlated, even after accounting for these controls.

Among the own effects, the estimated coefficients for the following variables are statis-

tically significant: age, gender (male), mother’s education less than high school, mother’s

education more than high school, mother’s education level missing, and mother’s occupation

being professional. The coefficients for age and gender are both negative, indicating that

older and male students participate less in recreational activities. Additionally, students

whose mothers’ education level is missing or less than high school also participate less, while

40



those whose mothers have more than a high school education participate more. Furthermore,

students whose mothers hold a professional occupation also participate more. Among the

contextual effects, the estimated coefficients for age and Black are the only ones statistically

significant. We observe that having older peers increases participation, while having Black

peers reduces participation.

The estimation results for smoking are presented in Table 8. The reported pseudo R2

measures based on the ME and RME are 0.175 and 0.175, respectively. The estimates for

both α and τ reported by the ME and RME estimators are statistically significant. The

respective estimates for α are 0.1393 and 0.1253, while the estimates for τ are −0.2416 and

−0.2274. These results provide statistical evidence of endogenous peer effects on smoking

behavior, as well as correlation of unobserved factors that influence smoking frequencies.

Among the own effects, the estimated coefficients for the age variable, Black dummy

variable, Hispanic dummy variable, the dummy variable indicating whether the respondent

lives with both parents, and the dummy variable for mother’s education less than high school

are statistically significant. Of these, the estimate for age is positive, while all others are

negative. Thus, smoking frequency increases with age. Black and Hispanic students smoke

relatively less than white students, and students whose mothers have less than a high school

education smoke less than those whose mothers have a high school education.

Among the contextual effects, the estimated coefficients for the Black dummy variable and

the dummy variable indicating whether the respondent lives with both parents are negative

and statistically significant. This suggests that having Black peers and peers who live with

both parents reduces smoking frequency.
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Table 5: Summary statistics

Original sample Final sample

Variable Mean SD Mean SD Min Max

GPA 2.482 1.177 2.911 0.763 0 4
Recreational activities 1.811 1.459 2.227 1.475 0 4
Smoking 3.904 9.328 3.344 8.734 0 30
Age 15.023 1.700 14.820 1.904 10 19
Male 0.494 0.500 0.480 0.500 0 1
Black 0.189 0.392 0.245 0.430 0 1
Asian 0.065 0.247 0.034 0.181 0 1
Hispanic 0.146 0.353 0.092 0.289 0 1
Other race 0.056 0.230 0.064 0.244 0 1
Live with both parents 0.725 0.447 0.720 0.449 0 1
Mom education less than HS 0.103 0.304 0.100 0.301 0 1
Mom education more than HS 0.404 0.491 0.408 0.492 0 1
Mom education missing 0.113 0.316 0.099 0.299 0 1
Mom on welfare 0.009 0.093 0.011 0.105 0 1
Mom job missing 0.095 0.293 0.087 0.282 0 1
Mom on professional job 0.257 0.437 0.254 0.435 0 1
Mom on other job 0.355 0.478 0.350 0.477 0 1
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Table 6: Estimation results on GPA

ME RME

α τ α τ

−0.0110 −0.0876*** −0.0030 −0.1024***
(.010) (.014) (.010) (.014)

Own Contextual Own Contextual

Age −0.1321*** −0.0032 −0.1309*** −0.0019
(.015) (.002) (.017) (.002)

Male −0.1129*** −0.0022 −0.1134*** −0.0031
(.020) (.013) (.020) (.012)

Black −0.0882** −0.0177 −0.0898** −0.0169
(.036) (.013) (.036) (.013)

Asian 0.1055* 0.0435 0.1027** 0.0437*
(.056) (.028) (.052) (.026)

Hispanic −0.1407*** 0.0106 −0.1405*** 0.0085
(.041) (.022) (.046) (.022)

Other races −0.0151 −0.0220 −0.0146 −0.0189
(.040) (.026) (.042) (.028)

Both parents 0.1212*** 0.0391*** 0.1215*** 0.0409***
(.022) (.015) (.023) (.015)

Less HS −0.0957*** −0.0671*** −0.0953*** −0.0666***
(.033) (.023) (.036) (.025)

More HS 0.1242*** 0.0051 0.1231*** 0.0071
(.023) (.014) (.023) (.013)

Edu miss −0.0203 −0.0231 −0.0199 −0.0212
(.033) (.024) (.035) (.024)

Welfare 0.1978** 0.0122 0.1984** 0.0129
(.088) (.075) (.079) (.083)

Job miss −0.0592 −0.0047 −0.0581 −0.0044
(.036) (.026) (.037) (.025)

Professional 0.0595** 0.0208 0.0604** 0.0215
(.027) (.018) (.027) (.017)

Other jobs 0.0164 0.0214 0.0167 0.0210
(.024) (.015) (.024) (.015)

Pseudo R2 0.226 0.225

Statistical significance at 1%, 5% and 10% levels are respectively denoted by ∗∗∗, ∗∗ and
∗.

43



Table 7: Estimation results on recreational activities

ME RME

α τ α τ

0.0146 −0.0338** 0.0228* −0.0440***
(.014) (.017) (.012) (.015)

Own Contexual Own Contexual

Age −0.2110*** 0.0066** −0.2107*** 0.0075***
(.029) (.003) (.030) (.003)

Male −0.2010*** −0.0264 −0.2011*** −0.0271
(.037) (.024) (.037) (.023)

Black 0.0292 −0.0595** 0.0262 −0.0596**
(.065) (.027) (.066) (.028)

Asian 0.1719 −0.0253 0.1723 −0.0229
(.107) (.058) (.106) (.057)

Hispanic 0.0217 −0.0253 0.0199 −0.0252
(.081) (.046) (.085) (.047)

Other races −0.1001 0.0890* −0.0996 0.0867
(.079) (.049) (.078) (.052)

Both parents 0.0748* −0.0243 0.0751 −0.0201
(.043) (.029) (.045) (.030)

Less HS −0.2127*** −0.0045 −0.2130*** −0.0062
(.065) (.045) (.068) (.046)

More HS 0.2137*** 0.0212 0.2132*** 0.0256
(.046) (.027) (.046) (.026)

Edu miss −0.2250*** −0.0324 −0.2258*** −0.0345
(.066) (.047) (.068) (.047)

Welfare 0.1535 −0.0914 0.1533 −0.0886
(.176) (.157) (.193) (.165)

Job miss −0.0608 −0.0030 −0.0606 −0.0020
(.071) (.050) (.071) (.051)

Professional 0.1910*** 0.0187 0.1921*** 0.0228
(.054) (.035) (.053) (.033)

Other jobs 0.0430 0.0140 0.0434 0.0162
(.047) (.030) (.048) (.029)

Pseudo R2 0.175 0.176

Statistical significance at 1%, 5% and 10% levels are respectively denoted by ∗∗∗, ∗∗ and
∗.
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Table 8: Estimation results on smoking

ME RME

α τ α τ

0.1393*** −0.2416*** 0.1253*** −0.2274***
(.030) (.029) (.040) (.041)

Own Contexual Own Contexual

Age 0.8507*** 0.0602** 0.8562*** 0.0514*
(.167) (.024) (.222) (.029)

Male −0.2097 −0.1711 −0.2081 −0.1656
(.231) (.156) (.238) (.136)

Black −2.6739*** −0.5662** −2.6753*** −0.4964**
(.421) (.247) (.429) (.245)

Asian −0.8330 −0.5100 −0.8271 −0.4860*
(.623) (.370) (.593) (.273)

Hispanic −1.3041*** −0.1839 −1.2929** −0.1385
(.469) (.288) (.522) (.257)

Other races 0.1079 −0.0663 0.1157 −0.0581
(.484) (.329) (.549) (.295)

Both parents −1.2153*** −0.5759*** −1.2072*** −0.5522***
(.263) (.189) (.282) (.195)

Less HS 1.2898*** 0.1930 1.2996*** 0.1993
(.391) (.282) (.478) (.291)

More HS 0.0195 0.0166 0.0285 0.0346
(.276) (.177) (.273) (.168)

Edu missing −0.0664 −0.1014 −0.0585 −0.0826
(.406) (.293) (.370) (.261)

Welfare −0.3750 −0.1072 −0.3720 −0.1170
(1.043) (.838) (1.002) (.651)

Job missing −0.1558 −0.0919 −0.1513 −0.0744
(.433) (.312) (.418) (.291)

Professional −0.2074 −0.0099 −0.2029 −0.0077
(.320) (.212) (.316) (.182)

Other jobs 0.0269 −0.1198 0.0336 −0.1188
(.283) (.187) (.296) (.170)

Pseudo R2 0.175 0.175

Statistical significance at 1%, 5% and 10% levels are respectively denoted by ∗∗∗, ∗∗ and
∗.
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7 Conclusion

In this paper, we contributed to the peer effects literature by introducing a new model of

peer effects due to socially interacting agents. The MES network model accommodates the

endogenous effect, the contextual effects, heterogeneity across groups, the correlation in un-

observed characteristics of members, as well as an unknown form of heteroskedasticity. We

provided an underlying theoretical framework which yields the MES network model, and

proposed consistent estimation and inference methods for its parameters under both ho-

moskedastic and heteroskedastic cases. We proposed a transformation approach and a direct

approach for estimation where the latter does not require row normalization of network ma-

trices. In an extensive Monte Carlo study, we showed evidence for the satisfactory finite

sample performance of the proposed estimators. Moreover, in three different empirical ap-

plications using the well-known Add Health data set, we illustrated the use of MES network

model in identifying peer effects on academic success, recreational activities and smoking

frequency of adolescents. Finally, we note that the MES network model can be further ex-

tended to simultaneous modeling of peer effects and network formation (Goldsmith-Pinkham

and Imbens, 2013; Hsieh and Lee, 2016; Hsieh and Lin, 2021). We leave this extension to a

future study.
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Clark, Andrew E. and Youenn Lohéac (2007). ““It wasn’t me, it was them!” Social influence
in risky behavior by adolescents”. In: Journal of Health Economics 26.4, pp. 763–784.

Debarsy, Nicolas, Fei Jin, and Lung fei Lee (2015). “Large sample properties of the matrix
exponential spatial specification with an application to FDI”. In: Journal of Econometrics
188.1.

Fruehwirth, Jane Cooley (2014). “Can Achievement Peer Effect Estimates Inform Policy?
A View From Inside The Black Box”. In: The Review of Economics and Statistics 96.3,
pp. 514–523.

Goldsmith-Pinkham, Paul and Guido W. Imbens (2013). “Social Networks and the Identi-
fication of Peer Effects”. In: Journal of Business & Economic Statistics 31.3, pp. 253–
264.

Hsieh, Chih-Sheng and Lung Fei Lee (2016). “A Social Interactions Model with Endogenous
Friendship Formation and Selectivity”. In: Journal of Applied Econometrics 31.2, pp. 301–
319.

Hsieh, Chih-Sheng and Xu Lin (2021). “Social interactions and social preferences in social
networks”. In: Journal of Applied Econometrics 36.2, pp. 165–189.

Jennrich, Robert I. (1969).“Asymptotic Properties of Non-Linear Least Squares Estimators”.
In: The Annals of Mathematical Statistics 40.2, pp. 633–643.

Kelejian, Harry H. and Ingmar R. Prucha (2001). “On the Asymptotic Distribution of the
Moran I Test Statistic with Applications”. In: Journal of Econometrics 104.2, pp. 219–
257.

— (2010). “Specification and estimation of spatial autoregressive models with autoregressive
and heteroskedastic disturbances”. In: Journal of Econometrics 157, pp. 53–67.

Lee, Lung fei, Ji Li, and Xu Lin (2014). “Binary Choice Models Wıth Social Network Under
Heterogeneous Rational Expectations”. In: The Review of Economics and Statistics 96.3,
pp. 402–417.

Lee, Lung-fei (2007). “Identification and estimation of econometric models with group inter-
actions, contextual factors and fixed effects”. In: Journal of Econometrics 140.2, pp. 333–
374.

47



Lee, Lung-fei, Xiaodong Liu, and Xu Lin (2010). “Specification and estimation of social
interaction models with network structures”. In: The Econometrics Journal 13, pp. 145–
176.

Lee, Lung-Fei, Xiaodong Liu, Eleonora Patacchini, and Yves Zenou (2021). “Who is the
Key Player? A Network Analysis of Juvenile Delinquency”. In: Journal of Business &
Economic Statistics 39.3, pp. 849–857.

Lee, Lung-fei and Jihai Yu (2010). “Estimation of spatial autoregressive panel data models
with fixed effects”. In: Journal of Econometrics 154.2, pp. 165–185.

LeSage, James and R Kelley Pace (2007). “A matrix exponential spatial specification”. In:
Journal of Econometrics 140.1, pp. 190–214.

LeSage, James and Robert K. Pace (2009). Introduction to Spatial Econometrics (Statistics:
A Series of Textbooks and Monographs. London: Chapman and Hall/CRC.

Lin, Xu (2010). “Identifying Peer Effects in Student Academic Achievement by Spatial Au-
toregressive Models with Group Unobservables”. In: Journal of Labor Economics 28.4,
pp. 825–860.

— (2015). “Utilizing spatial autoregressive models to identify peer effects among adoles-
cents”. In: Empirical Economics 49, pp. 929–960.

Liu, Xiaodong and Lung-fei Lee (2010). “GMM estimation of social interaction models with
centrality”. In: Journal of Econometrics 159.1, pp. 99 –115.

Manski, Charles F (1993). “Identification of endogenous social effects: The reflection prob-
lem”. In: The review of economic studies 60.3, pp. 531–542.

Moffitt, Robert A. (2001). “Policy interventions, low-level equilibria, and social interactions”.
In: Social Dynamics. Ed. by Steven N. Darlauf and H.Peyton Young. Cambridge, MA:
MIT Press.

Patacchini, Eleonora and Yves Zenou (2009). “Juvenile Delinquency and Conformism”. In:
The Journal of Law, Economics, and Organization 28.1, pp. 1–31.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge UK: Cambridge university
press.

White, Halbert G. (1980). “A Heteroskedasticity-Consistent Covariance Matrix Estimator a
Direct Test for Heteroskedasticity”. In: Econometrica 48.4, pp. 817–838.
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