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Abstract

The recent explosion of big data with large sample sizes  has brought to

the surface an old foundational problem known as the ‘large ’ relating to the

misuse of frequentist testing to forge ‘spurious’ statistical significance. Large

 data sets are universally considered a blessing because they can give rise

to more accurate and trustworthy evidence. What is often ignored, however,

is that these benefits take place only when certain preconditions are satisfied,

the most crucial being the validity of the probabilistic assumptions invoked by

the particular inference. The large  problem arises naturally in the Neyman-

Pearson (N-P) testing due to the inherent trade-off between the type I and type

II error probabilities around which the optimality of N-P tests revolves. It is

well known since the 1930s that as  increases the p-value decreases, and the

power increases. This calls into question the ‘statistical significance’ of para-

meters of interest using the conventional significance levels, 05 025 01, when

 is very large. It is arged that the traditional ‘rules of thumb’ of decreasing

 as  increases can alleviate but do not address the problem. A principled

argument in the form of a post-data severity evaluation of the accept/reject 0

results can address the large  and related problems, including the rigging of

the significance level , the arbitrariness of framing 0 and 1 the statistical

vs. substantive significance, and estimation-based vs. testing-based effect sizes.

KEYWORDS: Large  problem; Student’s t test; Neyman-Pearson testing;

p-value; accept/reject 0 results; non-central sampling distributions; post-data

severity evaluation; warranted discrepancy; statistical vs. substantive signifi-

cance; spurious statistical significance.
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1 Introduction

Big data sets with large sample sizes () have become widely available in many scien-

tific disciplines. Such data are universally considered a blessing because the additional

sample information can potentially give rise to more accurate and trustworthy evi-

dence. What is often neglected, however, is that the potential for such gains calls

for certain preconditions to be met. The most important is that the invoked sta-

tistical model M(x) — comprising the probabilistic assumptions imposed on data

x0:=(1 2  ) — should be validated before any inferences are drawn.

The reason for the validation ofM(x) is that its statistical adequacy (approxi-

mate validity) secures the statistical reliability of inference by ensuring that (i) the

nominal optimality (derived assumingM(x) is valid) of the inference procedures is

in fact actual, as well as (ii) the nominal and the actual (based on data x0) error

probabilities are approximately equal. In contrast, a statistical misspecified M(x)

will give rise to non-optimal procedures and sizeable discrepancies between the ac-

tual and nominal error probabilities, rendering the inference results unreliable and

the ensuing evidence untrustworthy. Applying a 05 significance level test when the

actual type I error probability is closer to 97 (see Table 4), will yield spurious results

and untrustworthy evidence; see Spanos (1989), Spanos and McGuirk (2001).

Modern frequentist statistics has been pioneered in the early 1920s by R.A. Fisher

in the form of model-based statistical induction that revolves around a parametric

statistical modelM(x). He also proposed a theory of optimal point estimation and

a theory of significance testing driven by the p-value; see Fisher (1922, 1925a-b). J.

Neyman and E. Pearson (N-P) supplemented that with an optimal theory of hypoth-

esis testing, and J. Neyman (1937) proposed an optimal theory of interval estimation.

Regrettably, these protagonists left largely unresolved several foundational problems

that have bedeviled frequentist inference since the 1930s, including the following.

(1) What is a statistical model M(x) for data x0 and how is best selected?

(2) What is the primary aim of frequentist inference in learning from data x0?

(3) What is the reasoning underlying the derivation of the relevant sampling

distributions employed to frame frequentist inference results?

(4) How can one bridge the gap between statistical results (estimation,

testing) and evidence for or against an inferential claims?

(5) What are the respective roles of the ‘substantive’ subject matter and the

‘statistical’ information (chance regularities) in data x0 in empirical modeling?

(6) How can one establish the statistical adequacy ofM(x) using effective

Mis-Specification (M-S) testing and respecification?

(7) Foundational issues bedeviling frequentist testing since the 1930s:

(a) The claimed incompatibility between N-P and significance testing

(b) The arbitrariness in framing the N-P hypotheses 0 and 1.

(c) The rigging the significance level  to get a desired result.

(d) The large/small  problems yielding ‘spurious’ inference results.

(e) Distinguishing between statistical and substantive significance.
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These foundational issues are interrelated since addressing one involves dealing with

some of the others, but the main focus will be on the large  problem and its effects.

Section 2 summarizes Fisher’s model-based frequentist statistics, with particu-

lar emphasis on Neyman-Pearson (N-P) testing, as a prelude to the discussion that

follows. Section 3 revisits the large/small  problems in N-P testing and their impli-

cations for the trustworthiness of the ensuing evidence. Section 4 considers how the

post-data severity evaluation of the accept/reject0 results (Mayo and Spanos, 2006,

2011) can address the large  problem. Section 5 considers briefly how the post-data

severity evaluation can be used to deal with the other foundational problems.

2 Model-based frequentist statistics: an overview
All approaches to empirical modeling using statistics involve three basic components.

[a] Questions of substantive interest (however vague or specific), [b] the relevant

data x0:=(1 2  ) selected to shed light on these questions, and [c] a set of

probabilistic assumptions comprising the (implicit) statistical model.

2.1 Fisher’s model-based statistical induction

Model-based frequentist statistics was pioneered by Fisher (1922) as a form of statis-

tical induction that revolves around a statistical model whose generic form is:

M(x)={(x;θ) θ∈Θ} x∈R
  for Θ⊂R  (1)

where (x;θ) denotes the (joint) distribution of the sample X:=(12 ) R


is the sample space, and Θ the parameter space; see Spanos (2006b).

(1) What is a statistical model M(x) for data x0 and how is selected?

M(x) constitutes a statistical mechanism framed in terms of probabilistic assump-

tions relating to the observable stochastic process { ∈N} underlying x0 It is
selected on the basis that it could have given rise to data x0, and reconcile [a]-[b].

[b]M(x) is selected to account for all the chance regularity patterns exhibited by

data x0 by choosing appropriate probabilistic assumptions relating to the underlying

process { ∈N}, from three broad categories, Distribution, Dependence, and
Heterogeneity. Equivalently, M(x) is selected to render data x0 a ‘truly typical

realization’ thereof; the ‘typicality’ can be tested using Mis-Specification (M-S) tests.

[a] Select a particular parametrization θ∈Θ forM(x) that enables one to pose

the substantive questions of interest to data x0; see Spanos (1986).

Example 1. A widely used example is the simple Normal model:

M(x): vNIID( 2) ( 2)∈R×R+ ∈R ∈N (2)

where θ:=( 2) R:=(−∞∞) R+:=(0∞) and ‘NIID( 2)’ stands for ‘Normal
(N), Independent and Identically Distributed (IID), with mean  and variance 2

Note that (x;θ) encapsulates the probabilistic assumptions ofM(x) since:

(x;θ)
I
=

Q
=1

(;θ)
IID
=

Q
=1

(;θ)
NIID
= ( 1√

22
) exp

½
− 1
22

P
=1

(−)2
¾
 x∈R
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(2) What is the primary aim of frequentist inference in learning from data x0?

The main objective of model-based frequentist inference is to ‘learn from data x0’

about θ∗ where θ∗ denotes the ‘true’ value of θ in Θ; shorthand for saying that there
exists a θ∗∈Θ such thatM∗(x)={(x;θ∗)} x∈R

  could have generated data x0.

The cornerstone of frequentist inference is the concept of a sampling distribution,

(;θ)=() for all (∀) ∈R , of a statistic =(12  ) (estimator,

test, predictor), which is derived directly from (x;θ) via:

()=P(≤)=
Z Z

· · ·
Z

| {z }
{x: (x)≤}

(x;θ)x ∀∈R 
(3)

(3) What is the reasoning underlying the derivation of the relevant sampling

distributions employed to frame frequentist inference results?

The derivation of the relevant sampling distributions are based on two different

forms of reasoning:

(i) factual (estimation and prediction): presuming that θ=θ∗, and
(ii) hypothetical (hypothesis testing): 0: θ∈Θ0 (presuming θ∈Θ0) vs. 1: θ∈Θ1

(presuming θ∈Θ1); see Spanos (2019). Hence, θ is always prespecified in (3).
The sampling distribution, (;θ) ∀∈R , frames the uncertainty relating to

the fact that data x0 constitutes a single realization (out of all x∈R
) of the sample

X and is used to calibrate the capacity (optimality) of the inference procedure in

terms of the relevant error probabilities, coverage, type I, II and power.

The derivation of (;θ) ∀∈R  in (3) presumes the validity of (x;θ) x∈R
 

and thus Fisher (1922) emphasizes the importance of establishing the statistical ad-

equacy of M(x): “For empirical as the specification of the hypothetical population

[statistical model] may be, this empiricism is cleared of its dangers if we can apply a rig-

orous and objective test of the adequacy with which the proposed population represents

the whole of the available facts.” (p. 314). He goes on to emphasize the importance

of model validation and the crucial role of Mis-Specification (M-S) testing to provide

an empirical justification for statistical induction: “The possibility of developing com-

plete and self-contained tests of goodness of fit deserves very careful consideration, since

therein lies our justification for the free use which is made of empirical frequency formu-

lae.” (p. 314) Fisher emphasized that statistical induction differs from other variants

of induction in so far as its justification is empirical, stemming from the statistical

adequacy ofM(x), and not from any a priori stipulations; see Spanos (2022b).

Statistical adequacy plays a crucial role in securing the reliability of inference be-

cause it secures the approximate equality between the actual and the nominal error

probabilities based on x0 ensuring the ‘control’ (keep track of) of these probabilities.

In contrast, whenM(x) is statistically misspecified, (a) (x;θ) x∈R
  is erroneous,

and that (b) distorts the sampling distribution (;θ) derived in (3), (c) giving rise

to ‘non-optimal’ estimators and sizeable discrepancies between the actual and nom-

inal error probabilities; see Spanos (2009). Hence, the way to ‘control’ the relevant
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error probabilities is by establishing the statistical adequacy ofM(z). Regrettably,

as Rao (2004) argues, the statistical adequacy of M(x) is neglected in statistics

courses: “They teach statistics as a deductive discipline of deriving consequences from

given premises [M(x)]. The need for examining the premises, which is important for

practical applications of results of data analysis, is seldom emphasized.” (p. 2)

2.2 Neyman-Pearson (N-P) testing

Example 1 (continued). In the context of (2), testing the hypotheses:

0:  ≤ 0 vs. 1:   0 (4)

N-P testing yields the optimal (UMP) -significance level test:

:=[(X)=
√
(−0)


 1()={x: (x)}] (5)

where =
1


X

=1
 

2
=

1
(−1)

P

=1(−)
2 1() is the rejection region, and

 is determined by the significance level ; see Lehmann and Romano (2005).

The sampling distribution of (X) evaluated under 0 (hypothetical) is:

(X)=
√
(−0)



=0v St(−1) (6)

is used to evaluate the type I error probability and the p-value:

=P((X); =0) (x0)=P((X)(x0); =0) (7)

That is, both the type I error probability and the p-value in (7) are evaluated using

hypothetical reasoning, that interprets ‘=0 is true’ as ‘what if’ 0=
∗’.

The sampling distribution of (X) evaluated under 1 (hypothetical) is:

(X)=
√
(−0)



=1v St(1;−1) 1=
√
(1−0)


 ∀10 (8)

where 1 is the noncentrality parameter of St(1;−1) 1=0+1, 1≥0, with:
P(1)=P((X)  ; =1) ∀10 (9)

defining the power of  evaluated based on (8). 1 indicates that the power increases

monotonically with
√
 and (1−0) and decreases with .

The pre-data testing error probabilities (type I, II, and power) are:

(i) hypothetical and unobservable in principle since they revolve around ∗,
(ii) not conditional on values of ∈Θ since ‘presuming = =0 1’ constitute

neither events nor random variables, and

(iii) assigned to the test procedure  to ‘calibrate’ its generic (for any x∈R)

capacity to detect different discrepancies  from =0 for a prespecified 

The type I and II error probabilities are interrelated since there is a in-built

trade-off between them. Neyman and Pearson (1933) addressed this trade-off by

prespecifying  at a low value and maximizing P(1) ∀1=0+1∈Θ1, 1±0 to
define a Uniformly Most Powerful (UMP) test; see Lehmann and Romano (2005).

The primary role of the pre-data testing error probabilities (type I, II, power) is

to operationalize the notions of ‘statistically significant/insignificant’ in terms of the
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sampling distribution of (X). The testing results ‘accept/reject0’ depend crucially

on the particular statistical context (Spanos, 2019, ch. 13):

(i)M(x) (ii) 0: ∈Θ0 vs. 1: ∈Θ1 (iii) :={(X) 1()}, (iv) data x0 (10)

The most egregious misinterpretation of the accept/reject 0 results is to detach

them from their statistical context in (10) and use stars, say =1 [∗], =05 [∗∗],
=01 [∗∗∗], to indicate statistical significance at different .

2.3 Inference ‘results’ vs. inferential claims about evidence

(4) How can one relate statistical results (estimation, testing, prediction)

and evidence for or against an inferential claim in frequentist inference?

In statistical inference, it is important to distinguish between statistical results,

such as a point estimate, say b(x0) an observed (1−) CI, say [(x0) (x0)] and
an accept or reject 0 outcome, and what inferential claims such results can justify.

Example 1 (continued). It is often presumed that the optimality of point es-

timators of ( 2): b(X)==
1


P

=1 and 2(X)= 1
(−1)

P

=1(−)
2 justify

the following inferential claims for a large enough .

(a) The point estimates b(x0)= and 2(x0)=2 based on data x0 ‘approximate
closely’ (') the true parameter values ∗ and 2∗ i.e.b(x0) ' ∗ and 2(x0) ' 2∗ when  is large enough. (11)

The inferential claim in (11) is unwarranted since b(x0) represents a single point
X=x0 of the estimator’s b(X) sampling distribution (b(x);θ) ∀x∈R. That is

the reason for reporting point estimates by attaching their standard errors (SE), sayb(x0)± 2(b(x0)). This is formalized using interval estimation.
(b) The inferential claim associated with an (1−) optimal CI for :

CI(X)=P(−
2
( √


) ≤   +

2
( √


); =∗)=(1−) (12)

relates to CI(X) overlaying ∗ with probability (1−) This does not justify the
inferential claim that the observed CI:

CI(x0)=[−
2
( √


)≤+

2
( √


)]

overlays ∗ with probability (1−) or that values of  in the middle of CI(x0) are
more probable than the ones at the end points. CI(x0) might or might not include 

∗

for a particular x0. Post data, the factual reasoning (what if =
∗) has transpired,

and no probability can be assigned to CI(x0).

(c) In N-P testing the ‘accept or reject 0’ results do not imply that there is

evidence for 0 or 1; see Spanos (2014, 2021a-b).

2.4 Substantive vs. statistical models

(5) What are the respective roles of the ‘substantive’ subject matter information

and the ‘statistical’ systematic information (chance regularities) in data x0?
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Behind every substantive (structural) model estimable with data z0:

M(z)={(x;ϕ) ϕ∈Φ} x∈R
  Φ⊂R ≤

there is always an implicit statistical modelM(z) that comprises solely the proba-

bilistic assumptions imposed on {(| X=x)  ∈N} without the statistically redun-
dant substantive restrictions.

Example 4. The statistical model implicit in a Capital Asset Pricing Model

(CAPM) is a Linear Regression (LR) model (Table 3):

M(z): (−2)=1(1−2)+ (|X=x)vNIID(0 2) ∈N
M(z): =0+11+22+ (|X=x)vNIID(0 2) ∈N
g(ϕθ)=0: 0=0 1+2−1=0 where ϕ=(1 2) θ=(0 1 2 2)

where Z:=( 1 2) denote ‘returns’ for: -a particular asset, 1-market, and

2-safe asset, respectively. The two models, M(z) and M(z) are related via

restrictions g(ϕθ)=0 whose validity for data z0, can be used to gauge whether

M(z) belies the data. Testing g(ϕθ)=0 should always be based on a statistically

adequateM(z) to secure the reliability of the test; see Spanos (1986, 1989, 2006).

3 The large  problem in N-P testing
The large  problem arises naturally in N-P testing due to the in-built trade-off

between the type I and type II error probabilities around which the optimality of

N-P tests revolves. Increasing  raises the power of a test and thus to avoid rejecting

0 for smaller and smaller discrepancies one needs to reduce  to counter-balance

the increase in power, but how? That has been a key question since the 1930s.

3.1 How the large  problem affects the p-value

Berkson (1938), in applying a chi-square test observed that “... when the numbers

in the data are quite large, the P’s [the p-values] tend to come out small.” “... if the

number of observations is extremely large — for instance, on the order of 200,000 — the

chi-square P will be small beyond any usual limit of significance.” He went on: “If, then,

we know in advance the P that will result..., it is no test at all.” (p. 527)

Empirical example 1 (continued). Consider the hypotheses:

0:  ≤ 0 vs. 1:   0 0=2 (13)

in the context of (2) using the following information:

=100 =05 =166, =2317 and 2=37675 (=1941) (14)

The test statistic (X)=
√
(−0)


yields: (x0)=

√
100(2317−2)
1941

=16533[0528]

where the p-value is (x0)=0528 indicating ‘accept 0’ at =05

The key question of interest is how increasing  beyond =100 will affect the

result of N-P testing. There are two possible scenarios to contemplate.

Scenario 1 assumes that all different values of  ≥ 100 yield the same observed
(x0). This scenario has been explored in Mayo and Spanos (2006, 2011).
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Scenario 2 assumes that the change in the estimates  and 
2
 are ‘relatively small’

to render (x0)=
√
(−0)


approximately constant for all ≥100. How appropriate

is this scenario in elucidating the large  problem? The first issue to consider is how

an increase in  will affect the estimates:

=
1


X

=1
 

2
=

1
−1

P

=1(−)2 (15)

The answer is: ‘if the NIID assumptions are valid’ for data x, the changes in  and

2 from increasing  are likely to be ‘relatively small’ since =100 is sufficiently large

to provide a reliable initial estimate, and thus increasing  is likely to bring small

changes in  and 
2
. In addition, since (x0) involves both  and  in a ratio, any

changes from increasing  will affect both, and that could potentially minimize the

changes on (x0) since an increase/decrease in , is likely to change  in tandem.

The second issue to consider is that the strong consistency of the estimators,

 
2
 does imply a gradual increase in the ‘precision’ of the estimates as  increases,

IF the invokedM(z) is statistically adequate. The problem, however, is that this

increase in precision cannot be quantified with any accuracy for a given . As argued

by Le Cam (1986): “... limit theorems “as  tends to infinity” are logically devoid of

content about what happens at any particular . ... Unfortunately, the approximation

bounds we could get are too often too crude and cumbersome to be of any practical use.”

(p. xiv). Hence, the unwarranted claim in (11).

The third issue is that
(−0)


for 0=0 is known in psychology as the ‘effect size’

for  (Cohen, 1988) widely used to infer the magnitude of the ‘scientific’ effect.

The above claims for scenario 2 can be verified using carefully designed simulations

that ensure that the replicated samples x1x2 x are statistically adequate.

Empirical example 1 (continued). Let us pursue scenario 2 assuming that any

marginal changes in =2317 and =1941 for =100 will keep
(−0)


constant.

0 100 200 300 400 500
0.00

0.02

0.04
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0.08

0.10

n

p-value

Fig. 1: the p-value curve for different sample sizes 

Figure 1 depicts the p-value curve for 100≤1000 indicating that one can easily
manipulate  to get the desired result since:

(a) For   105 the p-value will yield (x0)  =05 ‘accept 0’

(b) For   105 the p-value will yield (x0)  =05 ‘reject 0’
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Table 1 reports the values of (x0) and (x0) as  increases, showing that (x0)

decreases rapidly down to tiny values for ≥10000.

Table 1: the p-value with increasing  (constant estimates  )

 100 120 150 300 500 1000 2000 10000

(x0) 1633 1789 20 2829 3652 5165 7304 16332

(x0) 0528 038 024 0025 00014 00000015 2× 10−12 0000

The small  problem is equally pernicious as the large  since it undermines,

not only the primary inferences that revolve around θ but also the model validation

using Mis-Specification (M-S) testing. This is because neither form of testing will

be effective enough; their power will be too low to detect existing discrepancies.

Hence, a rule of thumb for an adequate sample size is that if  is not large enough

for comprehensive model validation to be effective (high enough power for detecting

existing departures from the probabilistic assumptions ofM(x)), is not large enough

for reliable inferences; see Spanos (2022a).

3.2 The large  problem and the power of a test

Neyman and Pearson (1933) understood the difference between inference results and

evidence for or against an evidential claim by arguing against (mis)interpreting ‘ac-

cept 0’ as evidence for 0’ and ‘reject 0’ as evidence for 1 Mayo and Spanos

(2006) framed these false interpretations in terms of two fallacies:

Fallacy of acceptance: misinterpreting ‘accept 0’ (no evidence against 0) as

evidence for 0’. This could arise when  is small enough.

Fallacy of rejection: misinterpreting ‘reject0’ (evidence against0) as providing

evidence for 1’. This could arise when  is large enough.

These fallacies point the finger at the power of a test as the primary culprit since,

for a fixed  the power increases monotonically with
√
 and thus the test will detect

smaller and smaller discrepancies  from =0 as  increases. To demonstrate that,

let us evaluate the discrepancy that test  can detect with power .8 ( (1)=8) as 

increases. Specific examples of  holding the power constant at .8 are shown in table

2, indicating that as  increases the test detects smaller and smaller discrepancies

from =0 with high enough power, say P(1)=8.

Table 2: Discrepancy  detected with  (1)=8 as  increases

 100 200 500 1000 10000 100000 1000000 20000000

 486 344 217 154 0485 01535 00486 0034

P(1) 8 8 8 8 8 8 8 8

Fisher (1935) was the first to raise the large  problem: “By increasing the size of

the experiment, we can render it more sensitive, meaning by this that it will allow of the

detection of ... quantitatively smaller departures from the null hypothesis.” (pp. 21-22).
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The power curves in figure 2 reflect the increases in  from figure 1 and provide

a more complete picture of how such increases affect the sensitivity of the test.

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
0.0

0.2

0.4

0.6

0.8

1.0

µ

power

Fig. 2: the power curve for different sample sizes 

3.3 The empirical literature and the large  problem

How does the large  problem relate to the current empirical literature? Examples

of extreme misuse of frequentist testing abound in all applied fields. In econometrics

data sets with a very large  are considered a blessing because they can yield more

accurate and trustworthy evidence, blithely ignoring the necessary preconditions for

these gains to materialize.

(i) One needs to establish the statistical adequacy of the invoked statistical model

M(x) before any inferences are drawn. Also, a statistically misspecified M(x)

renders discussions about the large  problem irrelevant due to sizeable discrepancies

between the nominal and actual error probabilities!

(ii) One needs to implement statistical inference by selecting the most effective

(optimal) inference procedures in the context ofM(x).

(iii) One needs to interpret the ensuing inference results pertinently, e.g. avoid

unwarranted inferential claims or conflate ‘inference results’ with ‘evidence’ for or

against hypotheses.

Example 2A (Abouk et al. 2022, Appendix J: Table 1. p. 99) On the basis

of an estimated Linear Regression (LR) model with =24732966, it is claimed that

the estimates b=004, SE(b)=002 render the coefficient  of a crucial variable
 statistically significant at =05!

(i) Statistical misspecification. The authors of this claim brushed aside any

questions relating to the validity of the probabilistic assumptions invoked when the

LR model is estimated for inference purposes (e.g. t-tests). For inference purposes

the probabilistic assumptions that matter are not the ones for the error process

{(|=)  ∈N} but those of the observable process {(|=)  ∈N} under-
lying data z0:={( ) =1 2  ); see Spanos (1986, 2006a-b, 2010).
A complete specification of the LRmodel in terms of internally consistent and testable

set of probabilistic assumptions relating to the observable process {(|=)  ∈N}
is given in Table 3 comprising assumptions [1]-[5]. The statistical parametrization of

10



θ:= (0 1 
2) constitutes an integral part of the specification that addresses nu-

merous confusions in textbook econometrics, including the omitted variables bias,

endogeneity/exogeneity, Instrumental Variables, GMM, etc., etc.; see Spanos (1986,

2006a-c, 2009, 2010a).

Table 3: Normal, Linear Regression model

Statistical GM: =0 + 1 +  ∈N:=(1 2   )
[1] Normality: (|=) v N( )
[2] Linearity:  (|=)=0 + 1

[3] Homoskedasticity:   (|=)=
2

[4] Independence: {(|=)  ∈N} indep. process,
[5] t-invariance: θ:= (0 1 

2) are not changing with 

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
∈N.

0=()−1() 1=(
()

()
) 2= ()−1( )

(6) How can one establish the statistical adequacy ofM(x) using effective

Mis-Specification (M-S) testing and respecification?

The most effective form of Mis-Specification (M-S) testing for evaluating the sta-

tistical adequacy of the LR model comes in the form of joint tests based on auxiliary

regressions for probing the assumptions [2]-[5] (Table 1.

The first auxiliary regression specifies how departures from different assumptions

might affect the regression function  ( | =)=0+1:

b=0 + 1 +

¬[5]z}|{
2 +

¬[2]z}|{
3

2
 +

¬[4]z }| {
4−1 + 5−1 + 1

0: 1=2=3=4=5=0 vs. 1: 1 6=0 or 2 6=0 or 3 6=0 or 4 6=0 or 5 6=0.
(16)

where ¬[] denotes the negation of [] The second auxiliary regression specifies how
departures from different assumptions might affect   ( | =)=

2:

b2=0 + ¬[5]z}|{
2 +

¬[3]z }| {
1 + 3

2
 +

¬[4]z }| {
4

2
−1 + 5

2
−1 + 2

0: 1=2=3=4=5=0 vs. 1: 1 6=0 or 2 6=0 or 3 6=0 or 4 6=0 or 5 6=0
(17)

Intuitively, the above auxiliary regressions can be viewed as attempts to probe the

residuals {b =1 2  } for any remaining systematic statistical information that
might have been missed by the LR model. More formally, the additional terms in (16)

and (17) will be zero when assumptions [2]-[5] are valid for data Z0. It is no accident

that M-S tests are often specified in terms of the residuals since {b =1 2  }
constitute a maximum ancillary statistic; see Spanos (2010b).

3.3.1 Statistical misspecification and its consequences

To illustrate the effects of invalid assumptions on the reliability of inference, consider

the following simulation example (Spanos and McGuirk, 2001) based on=10 000

replications with =50 and =100 using the following two scenarios.
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S1. The estimated LR model is statistically adequate. That is, the prob-

abilistic assumptions of [1]-[5] are valid for data z0; the true and estimated models

coincide: =0+1+.

When the estimated LR model is statistically adequate: (i) the empirical

means of the  point estimates are highly accurate and the empirical (actual) type

I error probabilities associated of the t-tests are very close to the nominal (=05)

even for a sample size =50 , and (ii) their accuracy improves as  increases.

S2. =0+1+ is estimated, but the true model is =0+1+1+

This renders invalid assumption [5] since 0()=0+1.

Table 4: Linear Regression (LR) and misspecification

S1: Adequate LR model S2: Misspecified LR model

Replications:

=10000

True: =15+05+

Estim: =0+1+

True: =15+13+5+
Estim: =0+1+

=50 =100 =50 =100

Parameters Mean SD Mean SD Mean SD Mean SD

[0=15] ̂0 1.502 .122 1.500 .087 0.462 .450 0.228 .315

[1=5] ̂1 0.499 .015 0.500 .008 1.959 .040 1.989 .015

[2=75] ̂2 0.751 .021 0.750 .010 2.945 .384 2.985 .266

[R2=25]2 0.253 .090 0.251 .065 0.979 .003 0.995 .001

t-statistics Mean =.05 Mean =.05 Mean =.05 Mean =.05

0=
̂0−0
̂0

0.004 .049 0.015 .050 -1.968 0.774 -3.531 0.968

1=
̂1−1
̂1

-.013 .047 -.005 .049 35.406 1.000 100.2 1.000

When the estimated model is misspecified: (i)* the empirical overall means

based on the  estimates are highly inaccurate (inconsistency) and the actual type

I error probabilities are much larger ( 77) than the nominal (=05), and (ii)*

as  increases the inaccuracy of the estimates increases and the actual type I error

probabilities approach 1! This undermines completely the claim that the combination

of (a) a very large  and (b) invoking asymptotic inferences can sidestep the problem

of establishing statistical adequacy is fallacious. The only criterion for evaluating

the reliability of frequentist inferences is: actual error probabilities' nominal

ones. This pertains to a wide variety of robustness claims currently invoked by text-

book econometrics. There are no real robustness results for generic departures from

IID; see Spanos (2002). The only credible robustness claim relates to certain forms

of non-Normality, assuming that all the other assumptions [2]-[5] are valid! It should

also be emphasized that in table 3 only assumption [5] is invalid, but in practice there

are often several such invalid assumptions. This simulation also illustrates the inanity

of addressing the large  problem whenM(z) is misspecified; one cannot keep track

of the error probabilities to be able to adjust them.
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(ii) Large  problem. The statistical significance (with =24732966) at =05

of  is taken at face value, oblivious to the large  problem in N-P testing.

(iii) Conflating ‘testing results’ with ‘evidence’. The authors claim evidence

for  6=0 and proceeds to draw conclusions about its substantive implications for the
effectiveness of different economic policies.

Let us elaborate on (ii) and (iii) using the reported results in Abouk et al. (2022),

using scenario 2. For the LR model the sampling distribution of bβ:=(b0 bβ1) is:
(
√
(bβ − β)|X) v N(0 2Q−1 ) lim→∞(X

>X

)=Q=[]


=1

Focusing on just one coefficient  the t-test for its significance is:

(y)=
√
(−0)

√


=0v
→∞

N(0 1) 1()={y: |(y)|
2
}

Example 2A (Abouk et al. 2022). Report b=004 SE(b)=q 

√

=002 and

(z0)05 implying
√
(−0)

√


=
√
24732966(004)√

98932
=2 for 025=196 and (z0)=045

Using this information, we can reconstruct what would (z0) have been for dif-

ferent  using scenario 2 in Table 5, which indicate that the claim of statistical

significance ( 6=0) will be unwarranted for any 24 000 000.
Table 5: the p-value with increasing  (constant estimates)

 100 500 1000 2000 10000 10×104 10×105 20×105 20×106 24×106
(x0) .004 .009 .0127 .018 .040 .127 .402 .569 1.798 1.970

(x0) .997 .993 .990 .986 .967 .899 .688 .570 .072 .049

The large  problem is particularly pernicious in applied micro studies with a huge 

since spurious statistical significance results are often used to frame policy decisions.

Example 2B (Abouk et al. 2022). The authors evaluate the difference between

the two means using the t-test (Lehmann and Romano, 2005):

 
: (Z)=[

q
12
1+2

(− )]
1=2v St(1+2−2) 1={z: |(z)|

2
} (18)

The authors (Table 2, p. 43) report 50 ANOVA results for the difference between

two means (−), 48 of which are very small, (−)  1, but their p-values are

tiny,  0000 due to =24 732 966 Surprising, however, for the remaining 2, whose

(−)=0 (=132, =132) and (=251, =251), the reported p-values are
8867 and 0056, respectively. This is surprising since for (−)=0 one expects
(z0)=0 and (z0)=1 What did go wrong? Blame the statistical software for using

(at least) 12 digit decimal precision and not 2.

For example, when (=251+000001−=251)=0000016=0, yields (z0)=0056,
which will occur with 1=11 004 078 2=13 728 888 =000032→ (z0)=277

3.4 ‘Meliorating’ the large  problem using ‘rules of thumb’

In light of the inherent trade-off between the type I and type II error probabilities,

some statistics textbooks advise practitioners to use ‘rules of thumb’ based on de-

creasing  as  increases; see Lehmann and Romano (2005).
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1. Naive rule of adjustment to :

 100 200 500 1000 10000 20000 200000 · · ·
 .05 .025 .01 .001 .000001 .000000001 .000000000001 · · ·

2. Good (1988) proposes to standardize the p-value (x0) to the relative

sample size =100 and =05 using the following rule of thumb:

100(x0)=min
³
5
h
(x0)·

p
100

i´
 10 (19)

Empirical example (continued). The above formula yields:

=120, 120(x0)=038: 100(x0)=0416

=150, 150(x0)=024: 100(x0)=0294

=300, 300(x0)=002: 100(x0)=0035

=500, 500(x0)=0002: 100(x0)=0045

=1000, 1000(x0)=000001: 100(x0)=000003

=10000, 10000(x0)=0000: 100(x0)=0000

The above results suggest that rules of thumb can be useful in helping to select  to

take into account the inherent trade-off between the type I and II error probabilities,

and avoid spurious results based on over-sensitive tests. They do not address the

large  problem, however, since they are ad hoc and the p-value will be very close to

zero beyond =100000 in practice. Instead, what is needed is to replace the rules of

thumb with a principled argument that provides an evidential interpretation of the

accept/reject 0 results by taking fully into account the relevant statistical context:

(i)M(x) (ii) 0: ∈Θ0 vs. 1: ∈Θ1 (iii) :={(X) 1()}, (iv) data x0.

4 The post-data severity evaluation

The key idea underlying the general concept of ‘severe testing’ is that an inferential

claim is warranted only when the different ways it can be false have been adequately

probed and forfended; see Mayo (1996). Applying that general idea to the N-P testing

‘accept/reject 0’ results takes the form of a post-data severity evaluation of such

results with a view to use (x0) in the context of test  to evaluated the warranted

discrepancy  from the null value =0 with high enough probability.

A hypothesis  (0 or 1) passes a severe test  with data x0 if:

(C-1) x0 accords with , and

(C-2) with very high probability, test  would have produced a result that ‘ac-

cords less well’ with  than x0 does, if  were false (Mayo and Spanos, 2006, 2011).

4.1 Case 1: accept 0

Let us illustrate the post-data severity evaluation based on C-1 and C-2.

Empirical example 1 (continued). Recall that for =05 =166 =2317,

=1941 and =100 test  in (5) yields:
√
100(2317−2)
1941

=16533[0507] ‘accept 0’.

(C-1) indicates that x0 accords with 0, and thus the relevant inferential claim is:

 ≤ 1=0 +  for  ≥ 0 (20)
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(C-2) suggests that the post-data severity evaluation relating to (20) should be

based on evaluating the probability of the event: "outcomes x that accord less well

with ≤1 than x0 does", i.e. event [x: (x)  (x0)], defining SEV(; ≤ 1) by:

 (;≤1)=P((X)(x0); =1) ∀∈Θ1=(2 3)

for different values of =1−0 with the evaluations being based on:

(X)=
√
(−0)



=1v St(1;−1) 1=
√
(1−0)


 ∀10

In the case of ‘accept 0’ one is seeking the ‘smallest’ discrepancy from 0=2 with

high enough probability.

The post-data severity evaluated for typical values is reported in table 6.

Table 6: Post-data Severity evaluation for 1≤20 + 

 .05 .1 .15 .20 .30 .317 .40 .481 .60 .70

1 2.05 2.1 2.15 2.2 2.3 2.317 2.4 2.481 2.6 2.7

SEV(≤1) .086 .133 .196 .274 .465 .500 .665 .800 .926 .974

The evaluation of  (;≤1) itself takes the form:
for =05 16332−

√
100(205−2)
1941

=13756 yields  (;≤1)=086
for =1 16332−

√
100(21−2)
1941

=1118 yields  (;≤1)=133
for =481 16332−

√
100(2481−2)
1941

=− 845 yields  (;≤1)=8
Figure 3, depicting the post-data severity curve for all ∈[18 30] indicates

that the discrepancy warranted by data x0 and test  with probability (SEV) .8 is

‡≤481 (1≤2481) Also, the results in table 5 bring out two important cases.
(i) The warranted discrepancy 1≤2481 is bigger than =2317.
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Fig. 3: the post-data severity curve (accept 0)

(ii) The probability associated with the relevant inferential claim ≤1=0+
for 1=2317= , is always 5; not high enough for =317 to be the discrepancy

warranted by x0.

15



4.2 The post-data severity and the large  problem
4.2.1 Case 1: accept 0

Using the fact that the point estimates for  and  do not usually change significantly

as  increases for values beyond =100 when the data x0 stem from an IID sample,

we will consider the following counter-factual scenario.

Counter-factual scenario: what if the estimates =2317 and =1941 remain

constant as  increases? What would the warranted discrepancy be at SEV()=8?
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Fig. 4: the severity curve (accept 0) for different  (same estimates)

Empirical example 1 (continued). Figure 4 depicts the post-data severity curves

as the sample size  (keeping the estimates =2317 and =1941 constant), indi-

cating that increasing  renders the severity curves steeper and steeper, reducing the

warranted discrepancy ‡ monotonically (Table 7) until they reach the lower bound
at ‡≤3217 (=2317)
Table 7: Post-data severity ( ()=8 1≤2+1, =2317 =1941)
: 100 120 150 200 300 500 1000 2000 20000 200000

(x0): 1.633 1.789 2.0 2.310 2.829 3.652 5.165 7.304 23.097 73.038

1=2+: 2.481 2.467 2.451 2.434 2.412 2.390 2.369 2.3535 2.329 2.321

This makes sense in practice since  and  are strongly consistent estimators of

∗ and ∗ i.e. P(lim→∞b(X)=∗)=1 and thus their accuracy (precision) improves
as  increases beyond a certain threshold . Recall that in the case of ‘accept0’ one

is seeking the ‘smallest discrepancy’ from 0=2. Hence, as  increases SEV renders

the warranted discrepancy ‡ ‘more accurate’ by reducing it, until it reaches the lower
bound around ‡≤317 (1=).
4.2.2 Case 2: reject 0

Empirical example 3. For the hypotheses in (13), let the estimate of  be =2726

retaining =1941, yields:

(x0)=
√
100(2726−2)
1941

=3740[00009]
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which indicates a strong ‘reject 0’. In contrast to the case ‘accept 0’ for ‘reject 0’

one is seeking the ‘largest’ discrepancy from 0=2 with high severity. The relevant

inferential claim takes the form:

 ≥ 1=0 +  for  ≥ 0 (21)

and its post-data probabilistic evaluation is based on:

 (;≥1)=P((X)(x0); =1) ∀∈Θ1=(2 3)

Table 8 indicates that the discrepancy  warranted with  (;≥1)=8 is
‡ ≤ 56 (1≤2562), and the discrepancy for 1≤ =2726 has  (;≥1)=5.

Table 8: Post-data Severity evaluation for 1 ≥ 2 + 

 .1 .2 .3 .4 .5 .562 .6 .726 .8 .9

1 2.1 2.2 2.3 2.4 2.5 2.562 2.6 2.562 2.6 2.7

SEV(≥1) .999 .996 .984 .951 .876 .800 .741 .500 .352 .186

Counter-factual : what if the original (=100) estimates =2726 and =1941

remained the same but the sample size  increases. How would the warranted dis-

crepancy at SEV(0+))=8 change?

Figure 5 depicts all the severity curves for =100 200 500 1000 10000, indicat-

ing that increasing the sample size  (keeping =2726 and =1941 constant) ren-

ders the curves steeper and steeper, ‘increasing’ the warranted discrepancy monoton-

ically (reject 0) up to the lower bound ‡≤75 (1==2726).
As in the case of accept 0 the strong consistency of  and  ensures that

increasing  in practice will improve the precision of the warranted discrepancy ‡.
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Fig. 5: the severity curve (reject 0) for different  (same estimates)

Example 2A (Abouk et al. 2022) continued. The reported t-test result is:
√
(−0)

√


=
√
24732966(004)√

98932
=20[045]

What is the warranted discrepancy  from =0 with high severity, say 977, in light of

=24732966? The answer is ‡≤0000001 and not b=004 or Cohen’s (z0)=0004.
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4.2.3 Key features of the post-data SEV evaluation

(1). It provides a principled argument to replace the ad hoc rules of thumb by an

evidential interpretation of the accept/reject0 results based on the discrepancy ≷0
from =0 warranted by data x0 and test  with high enough probability.

(2). The  (0+) evaluation is a statistical context-specific error probability

grounded in (10), with the sign and magnitude of (x0) suggesting the direction of

relevant discrepancies .

(3). What distinguishes the  (0+) evaluation from other attempts to deal

with the large  problem is that its outputting of the discrepancy 1=1−0 is based
on the non-central distribution:

(
√
(−0)


−

√
(1−0)


)
=1v St(−1) for all 1∈Θ1 (22)

This ensures that the warranted discrepancy ‡ is evaluated using the ‘same’ sample
size , counter-balancing the effect of  on (x0) In contrast, the p-value is evaluated

under =0 for which 0=0 and the power replaces (x0) in (22) with a constant

; see Spanos (2013a-b, 2014).

(4). The evaluation of the warranted ‡ accounts for the increase in  by enhanc-
ing its precision. In the case of accept (reject) 0 this comes in the form of reducing

(increasing) ‡ as  increases since one is seeking the smallest (largest) discrepancy
from 0 For a very large  the warranted discrepancy ‡ will approach the valueb(x0) since for a statistically adequateM(x) b(x0) should be accurate enough.
(5). The post-data severity perspective can explain the flaws of the p-value since

(i) (x0) indicates the presence of ‘some’ discrepancy  but provides no informa-

tion about its magnitude, (ii) the distribution (X) is evaluated only under 0 and

thus (iii) (x0) is vulnerable to the large/small  problems; see Spanos (2021b).

5 Additional foundational problems in N-P testing

5.1 N-P vs. significance testing: the claimed incompatibility
Fisher’s significance testing and the Neyman-Pearson (N-P) testing constitute two

variants of frequentist testing which are often presented as essentially ‘incompati-

ble’ and any attempt to blend them will result in an “inconsistent hybrid” which is

“burdened with conceptual confusion” (Gigerenzer, 1993, p. 324).

This claim is questionable since both approaches employ the same:

(a) underlying statistical set up, in the form of a statistical modelM(x),

(b) underlying ‘hypothetical’ reasoning, and

(c) probing =0 within the same statistical modelM(x)

The key difference is that the pre-data error probabilities (type I, II, power) for the

N-P testing aim to calibrate the generic capacity of a test, and the post-data p-value

for Fisher’s significance testing aims to provide a measure of discordance between

=0 and x0. Once the pre-data vs. post-data distinction is made explicit, the two

approaches can be harmoniously blended; see also Lehmann (1993).
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The confusion in the current literature stems from burdening Fisher’s post-data

p-value with a definition adapted to fit the N-P testing framing of 0 and 1

Pre-data definition. The p-value is the probability of obtaining a result ‘equal to

or more extreme’ than the one observed x0, when 0 is true’.

In the context of N-P testing, the clause ‘equal to or more extreme’ is invariably

interpreted in light of the framing of 1. This has led to the p-value being viewed

as the smallest significance level min at which 0 would have been rejected when

0 is true. There is nothing wrong with this definition when used in N-P testing. In

the context of Fisher’s significance testing with a point null, say =0 however, this

definition can be misleading since the additional information relating to the sign and

magnitude of (x0) pinpoints the direction of relevant departures from =0, which

can be at odds with the direction indicated by the particular 1 To rectify that, the

severity evaluation suggests an alternative post-data definition of the p-value.

Post-data definition. The p-value is the probability of all possible outcomes x∈R


that accord less well with 0 than x0 does [(0)], when 0 is true.

The key difference is that the post-data definition ensures that the sign and mag-

nitude of (x0) and not the particular N-P framing of 1 determine the direction

of the relevant departures. To illustrate that let us revisit the Berger example where

(x0)=− 26833 pointing at departures of the form 1=0+ 0 Hence, the post-

data p-value is (x0)=P((X)(x0); =0)=036 which is at odds with the direction
indicated by 1: 5 due to Berger’s rigged framing.

When the post-data p-value is viewed from the severity perspective, (x0)

indicates the presence of ‘some’ discrepancy  but provides no information about its

magnitude (Mayo and Spanos, 2006) since (i) the sampling distribution underlying

(x0) is evaluated only under0 (ii) (x0) is vulnerable to the large/small  problems

(e.g. high/low power), and (iii) the pre-data N-P framing; see Spanos (2021b).

5.2 Statistical results vs. evidence for an inferential claim

Given that the primary aim of frequentist testing is to learn from data x0 about

∗ the testing results accept/reject 0 are too coarse to provide genuine evidence

about ∗ For instance, in testing the hypotheses, 0: ≤0 vs. 1: 0 using the

UMP test  (section 2.4), a rejection of 0 with data x0 warrants the coarse claim

∗∈(0∞), which is not informative enough for ∗.
Example 4. For the simple Bernoulli model in (26), the relevant data refer to

newborns during a year where (=1) stands for a ‘boy (B)’ and (=0) stands for

a ‘girl (G)’. Let the hypotheses of interest by 0:  ≤ 0 vs. 1:   0 for 0=5,

where =()=P(=1) The data come from two different locations and more than
3 centuries apart, x1 (Cyprus, 1993) and x2 (London, 1687).

Applying the optimal test 
 to both data sets yields the results in Table 9,

with p-values in square brackets. The post-data severity curves (fig. 6) depict the

 (;x; 1) for 1=0+1 for data x =1 2 relating to the relevant inferen-

tial claim 1=0+1 for 10; the underlying distribution of (X) used for these
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evaluations is given in (28).

Table 9: N-P testing of 0:  ≤ 5 vs. 1:   5

Data 0:  ≤ 5 vs. 1:   5 =85

Cyprus 1993: x1: 5442 (B), 5072 (G): (x1)=
√
10514( 5442

10514
−5)√

5(1−5) =3600[00016] ‡ ≤ 0125

London 1687: x2: 7737 (B), 7214 (G): (x2)=
√
14951( 7737

14951
−5)√

5(1−5) =4277[000009] ‡ ≤ 0132
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Fig. 6: Severity curve for data x1 and x2

Although the SEV is always attached to the relevant inferential claim 1, it

can be intuitively viewed as indicating that the relevant neighborhood of ∗ is around
1=513±  for 0 ≤ 001, with probability 85.

5.3 Statistical vs. substantive significance

The small p-values stemming from a large enough  is often misconstrued as con-

flating statistical with substantive significance, which is erroneous since the apparent

statistical significance is spurious. To address the problem of statistical vs. substan-

tive significance one needs to consider two different but interrelated dimensions of

learning from data about phenomena of interest.

The first dimension relates to the precondition is that there is reliable enough

knowledge relating to the sign and magnitude of a parameter, say ¨ stemming from
substantive subject matter information; ideally from a substantive modelM(x).

The second dimension relates to having trustworthy evidence for the sign and

magnitude of a statistical parameter  stemming from a statistically adequateM(x).

The post-data severity evaluation of the accept/reject 0 results can provide the

link between the two parameters to address the problem. This is achieved by relating

the discrepancy ‡ from 0 (1=0± ‡) warranted by test  and data x0 with high
probability to the substantively determined ¨.
Example 4 (continued). In human biology (Hardy, 2002) is known that the

substantive value for the ratio of boys to all newborns is ¨'5122. In the above
example it is shown that for the two different data sets, x1 and x2, the severity-

based warranted discrepancies are 
‡
1≤0125 (1≤5125) and 

‡
2 ≤ 0132 (2≤5132),
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respectively. Hence, it is clear that both statistically determined values also entail

substantive significance since ¨'5122 ≤ 5125  5132. That is, the testing-based

warranted discrepancy from the 0 provides a reliable evaluation of the ‘scientific

effect’; see Spanos (2021a-b).

5.4 Post-data severity vs. estimation-based effect sizes

Related to the above statistical vs. substantive significance is the concerted effort

in psychology (Cohen, 1969/1988) to replace p-values with estimation-based effect

sizes based on reformulating test statistics to get rid of its reliance on , as a way to

circumvent the large  problem. As argued by Abelson (1995) : “One advantage of

the raw size effect as a measure is that its expected value is independent of the size of

the sample used to perform the significance test.” (p. 46)

Although there are many different formulae for effect sizes in the context of dif-

ferent statistical models (Ellis, 2010), the discussion will focus on Cohen’s  in an

attempt to relate it the post-data severity; see Spanos (2021a) for broader discussion.

Cohen (1969) proposed (z0)=
(−)


in the context of a simple bivariate Normal

model underlying the testing of the difference between two means; see section 3.3

above. Given that the relevant test statistic is (Z)=[
√
(− )] where:

= 12
1+2

 2=
(1−1)21+(2−1)22

(1+2−2)  21=
1

(1−1)
P1

=1(−)
2 22=

1
(2−1)

P2
=1(− )

2

Cohen’s (z0) constitutes a point estimate of the parameter =
(1−2)


 2=(2),

with (Z)=[(− )] the corresponding Maximum Likelihood (ML) estimator

which is reparametrization invariant. This renders (z0) questionable and as as a

way to circumvent the large  problem for two reasons.

First, (z0)=[(−)] is vulnerable to the small  problem. Abelson (1995)

points out: “... it could be argued that with a smallish sample, one might obtain a big

apparent effect without being able to reject the null hypothesis. In other words, an effect

size ought not to be judged in totally in isolation, but in conjunction with the p-value.”

Second, the inferential claim (z0) ' ∗ for a large enough  is unwarranted for

Cohen’s (z0), like all point estimates. This stems from the fact that (z0) represents

a single point Z=z0 of the sampling distribution of the pivot (Z;):

(Z;)=[
√
(− )]

=∗v St(1+2−2) ∀z∈R1+2 (23)

which is derived using factual (what if =∗) reasoning. Legitimate inferential claims
relating to  need to be framed in terms of (23). Hence, eliminating  from (Z;)

does not address the large  problem — it conceals it — since (− ) does not

have a well-defined sampling distribution without
√
 . To address the problem one

needs a legitimate sampling distribution relating to (− ); see Spanos (2021a).

A more effective way to deal with the large  problem is to use the post-data

severity evaluation of the accept/reject 0 results based on:

(Z)=
√
(− )



1 6=2v St(1;1+2−2) 1=
√
(1−2)


 (24)

21



The post-data severity of the discrepancy =(1−2) 6=0 warranted by test  
 and

data z0 with high enough severity. In contrast to Cohen’s (z0) estimation-based

effect size, the warranted discrepancy ‡ , provides a ‘test-based effect size’ which
is calibrated in terms of post-data error probabilities. This evaluates the ‘scientific

effect’ a lot more effectively than any point estimate could.

5.5 The framing of the N-P hypotheses 0 and 1

How arbitrary is the N-P framing? It is not as arbitrary as the wide-spread mis-

use/abuse of N-P testing might suggest! Consider the following example proposed by

Berger (2019) to demonstrate the fatuity of the p-value.

Example 5: Berger. Consider testing the hypotheses:

0: =5 vs. 1: 5 (25)

in the context of the simple Bernoulli (Ber) model:

 v BerIID( (1−)) =0 1 01 ∈N (26)

assuming =05 =1645 =20 =2. An optimal (UMP) test for (25) is:


 :={(X)=

√
(−0)√
0(1−0)

 C1()={x: (x)}}yielding: (x0)=− 2683
with a p-value (x0)=996, indicating ‘accept 0’; ha, ha,...,ha!

What is the real culprit behind this apparently absurd result? A hint about

the real culprit can be gleaned by evaluating the discrepancy 1 for 1=5+1 that

ensures high power, say P(1)=8, which is ‡1=2636 (1=7636); see fig. 7. This
discrepancy, however, is utterly uninteresting from a statistical perspective since the

data x0 (=2) indicate that 
∗∈(0 5) which is excluded by the framing in (25).

This suggests that the real source of the absurd result ‘accept 0’ is likely to be the

framing of 0 and 1 as it relates to the power of this test.
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Fig. 7: Power curve for Berger’s example

In particular, the (implicit) power of test  to detect discrepancies around 1=2

(=2) is P(1=2)=0000003 (figure 9), hence the absurd result ‘accept =5’. In
that sense Berger’s example does not expose the fatuity of the p-value, but the absur-

dity of the original framing in (25) that excludes ∗∈(0 5), which turns the probing
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with a UMP test into ‘a wild goose chase’, which gets worse as  increases since for

=100 P(1=2)'0.
A careful reading of Neyman and Pearson (1933) reveals two crucial preconditions

for the framing of 0: ∈Θ0 vs. 1: ∈Θ1 that secure the effectiveness of N-P testing
and the informativeness of its results in learning from data about ∗:
[1] Θ0 and Θ1 should form a partition of Θ (p. 293) to avoid ∗ ∈[Θ0∪Θ1]

[2] Θ0 and Θ1 should be framed to ensure that the type I error is the more serious

of the two (using the analogy with a criminal trial for which 0: not guilty; p. 296).

Given that an optimal N-P test is chosen by fixing  to a low value and selecting a

test that minimizes the type II error (accepting0 when false) probability, [2] implies

that low type II error probability (or equivalently high power) is needed around the

potential neighborhood of ∗- the true value of .
Berger’s framing 0: =5 vs. 1: 5 however, ensures that the test  has

high power for discrepancies 1∈(5 1)⊂Θ which is the ‘wrong’ subset as a result of

flouting both preconditions [1]-[2].

What would a proper framing be in this example? When no reliable pre-data

information about the potential neighborhood of ∗ is available, one should always
use a two-sided test to avoid negating [1], i.e. ∗ ∈[Θ0∪Θ1]. What happens when the
framing is 0: =5 vs. 1:  6=5? One would ‘reject 0’ with (x0)=0073, since

P(1=2± )≥94 for =1 An even better framing that satisfies [1]-[2] is:
0: ≥5 vs. 1: 5

Applying the UMP test 
 :={(X)=

√
(−0)√
0(1−0)

 C1()={x: (x)  }}

(x0)=
√
20(2−5)√
5(1−5)=− 26833[0036] rejects 0

Hence, the relevant severity inferential claim is 1≤0− 0:
 (; ≤1)=P((X)≤(x0); =1) ∀∈(0 5) (27)

for different values of =1−0 with the SEV evaluations based on:
[(X)−(1)]√

 (1)

=1v Bin (0 1;)'N(0 1) (1)=
√
(1−0)√
0(1−0)

  (1)=
1(1−1)
0(1−0)  (28)

It is important to note that the inequality for the evaluation in (27) stems from ≤0
The post-data severity curve in (27) (figure 8), indicates that the warranted dis-

crepancy with high enough probability, say 7 (=20), associated with the relevant

inferential claim:
10+ 0 is 1≤157.

5.6 Rigging the significance level  to get a desired result

Another problem with N-P testing is the dichotomous nature of the accept/reject

0 rules which render the choice of  vulnerable to rigging by selecting it after the

p-value has been evaluated. Indeed, this issue has been raised numerous times in the

literature as a major flaw because intuitively (x0)=049 and (x0)=051 should give

rise to similar evidence despite the reversal of the ‘accept/reject 0’.
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To illustrate this, let us return to empirical example 1, where the UMP test

yields (x0)=
√
100(2317−2)
1941

=16533[0507] indicating ‘accept 0’ at =05 What if,

one wants to rig the result by selecting =051 which will reverse the original result.

Although this might seem too obvious as a rigging attempt, one can contrive a much

less obvious examples with a larger .

The post-data severity evaluation addresses this issue by:

(a) transforming these inference results into evidence pertaining to ‘the discrep-

ancy ‡ warranted by test  and data x0’, and
(b) avoiding the dichotomy created by  using the information relating to the sign

and magnitude of (x0)

For instance, in the above example (x0)=16533 suggests that the discrepancy from

0=2 indicates by (x0) is clearly 0 and that calls for retaining the severity curve

in figure 3, despite the rigged reject 0 at =051 result. Probing for warranted

discrepancies 0 makes no sense post-data, and the severity curve remains the

same since it revolves around (x0) and not  One might object to this argument

by contrasting it to empirical example 3 where =2726 gives rise to reject 0

Looking at (x0)=
√
100(2726−2)
1941

=3740[00009] however, reveals that the change is

anything but marginal; see Spanos (2013a-b).

This issue relates to the widely accepted argument that in Fisher’s significance

testing the p-value is invariably ambiguous since it does not designate a direction of

departure analogous to 1 of N-P testing. This claim, however, ignores the fact that

the p-value is a post-data error probability, and thus the sign and magnitude of (x0)

provide additional information relating to the direction of departure which usually

eliminates one of the two tails, rendering the post-data p-value invariably one-sided.

6 Summary and conclusions

The accept/reject 0 results of N-P testing and the p-value are highly vulnerable to

the large  problem since the optimality of N-P tests revolves around the inherent

trade-off between the type I and II error probabilities. Hence, the detection of sta-

tistical significance based on conventional significance levels, = 1 05 025 01,

is likely to be spurious when a large enough  say 1000,. Such spurious results

arise since the observed test statistic (x0) (the p-value (x0)) increases (decreases)

monotonically with
√
 as  increases. This reflects the fact that the power of a test

increases monotonically with  rendering the particular test more and more capable

of detecting smaller and smaller discrepancies ± from the null value =0

The post-data severity evaluation can address the large  and related problems

(1)-(7) by outputting the warranted discrepancy ‡ warranted by data x0 and test 
with high probability.

(a) The SEV transforms the accept/reject0 ‘results’ into ‘evidence’ for particular

inferential claims of the form  ≷ 0+1 1 6=0
(b) The key feature of SEV in addressing the large  problem is that the evaluation
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of ‡ is always relative to the same  as (x0) that gives rise to the accept/reject
0 results. That is, in evaluating ‡ the SEV counter-balances the effect of  on

(x0)=
√
(−0)


by the non-centrality parameter 1=

√
(1−0)


.

(c) SEV harnesses the additional precision of the estimates from a larger  by

decreasing (increasing) the warranted discrepancy ‡ depending on whether (x0)
gave rise to a accept (reject) 0

(d) The SEV outputting the warranted discrepancy ‡ can be used to address
other foundational problems, including the rigging the significance level  the framing

of 0 and 1 distinguishing between statistical and substantive significance, as well

as a testing-based effect size for the magnitude of the ‘substantive’ effect.

In conclusion, it is important to reiterate that securing genuine ‘learning from data

x0’ about phenomena of interest begins with establishing the statistical adequacy of

the invoked statistical model M(x). The latter is the toll one is called to pay for

the statistical reliability and the trustworthiness of the ensuing evidence. Without

that the statistical analysis and the ensuing results degenerate into tinkering with

meaningless numbers and making up stories without any real evidence stemming

from one’s data.
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