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Abstract

Latent variable models are crucial in scientific research, where a key variable,
such as true GDP growth in specific countries or individuals’ true earnings, is
unobserved in the sample but needs to be identified. This paper proposes a
novel method for estimating realizations of a latent variable X™* in a random
sample that contains its multiple measurements. With the key assumption that
the measurements are independent conditional on X*, we provide sufficient con-
ditions under which X™* in the sample are locally unique in a class of deviations,
which allows us to identify realizations of X*. To the best of our knowledge,
this paper is the first to provide such identification in observation. We then use
the divergence function between the two probability densities with and without
the conditional independence as the loss function to train Generative Element
Extraction Networks (GEEN) that map from the observed measurements to re-
alizations of X* in the sample. The simulation results show that this proposed
estimator works quite well and the estimated values are highly correlated with
realizations of X*. We then use GEEN to estimate true GDP growth for each
developing country using such measurements as official GDP growth, nightlight
intensity, and Google search volume. Our estimates show more insightful infor-
mation on the economies than existing measurements. Given that our estimator
can be applied to a large class of latent variable models, we expect it will change

how people deal with latent variables.
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1 Introduction

Unobservables play a crucial role in scientific research because empirical researchers
often encounter a discrepancy between what is described in a model and what is ob-
served in the data. A typical example is the so-called hidden Markov models, where
a series of latent variables are observed with errors in multiple periods under condi-
tional independence assumptions. While there is a huge literature on the estimation of
the model with latent variables (e.g./Aigner, Hsiao, Kapteyn, and Wansbeek! (1984);
Bishop| (1998))), this paper focuses on the estimation of realizations of the latent vari-
able, which are not observed anywhere in the data. Suppose that the ideal data
for the estimation of a model is an ii.d. sample of (X!, X2, ..., X* X*) [ and that
the researcher only observed (X!, X2 ..., X*) in the sample. Generally, we consider
X7, 5 = 1...k, as multiple measurements of X*. Under conditional independence as-
sumptions, this paper provides a deep learning method to extract the common element
X* from multiple observables (X!, X2 ..., X*). We build Generative Element Extrac-
tion Networks (GEEN) to reveal realizations or draws of X* to achieve a complete
sample of (X1, X2, ..., X* X*) in the sense that the generated draws are observation-
ally equivalent to the true values in the sample.

This paper is different from the imputation method because the latent variable is
not observed anywhere in the sample and needs to be identified. For example, true
earnings of households are not observed anywhere in household survey data, but are
of great interest to know. By contrast, imputation requires at least some observations
of the underlying variable.

Researchers have already applied deep generative models for data imputation.
Yoon, Jordon, and Schaar| (2018) creatively use the Generative Adversarial Imputation
Nets (GAIN) to provide an imputation method, in which missing values are estimated
so that they are observationally equivalent to the observed values from the GAIN’s
perspective. |Li, Jiang, and Marlin (2019) also propose a GAN-based Goodfellow,
Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio| (2014) frame-
work for learning from complex, high-dimensional incomplete data to impute missing
data. Mattei and Frellsen| (2019) introduce the missing data importance-weighted

autoencoder for training a deep latent variable model to handle missing-at-random

'We use capital letters to stand for a random variable and lower case letters to stand for the
realization of a random variable. For example, fy (v) stands for the probability density function of
random variable V' with realization argument v, and fy |y (v|u) denote the conditional density of V'
onU.



data. Nazabal, Olmos, Ghahramani, and Valera (2020) present a general framework
for Variational Autoencoders (VAEs) Kingma and Welling (2013) that effectively in-
corporates incomplete data and heterogenous observations. |[Muzellec, Josse, Boyer,
and Cuturi (2020) leverage optimal transport to define a loss function for missing
value imputation. Yoon and Sull| (2020) propose a novel Generative Adversarial Mul-
tiple Imputation Network (GAMIN) for highly missing Data. In this literature, latent
spaces are used to represent high-dimensional observations, but are not identifiable
because their latent spaces may vary with parameter initialization. In addition, all the
missing data models require true values to be partially observed.

However, relatively little research has focused on estimating realizations of latent
variables, which are unobserved, or completely missing. In the economics literature,
Kalman filter and structural vector autoregressions have often been used to estimate
the realizations of latent variables, such as potential output |Kuttner| (1994), natural
rate of interest |Laubach and Williams| (2003)); [Holston, Laubach, and Williams| (2017)),
and natural rate of unemployment King and Morley (2007)), but the literature makes
parametric assumptions about the dynamics of latent variables and thus belongs to
the estimation of models with latent variables.

In our setting, we argue that the conditional independence restrictions imply the
local identification of the true values. That allows us to provide an estimator in the
continuous case. Our method is nonparametric in the sense that we do not assume
the distribution of the variables belong to a parametric family as in the widely-used
VAEs Kingma and Welling| (2013), which use the so-called Evidence Lower Bound
(ELBO) to provide a tractable unbiased Monte Carlo estimator. The VAEs focus on
the estimation of a parametric model. In this paper, we focus on the estimation of the
true values in each observation in the sample without imposing a parametric structure
on the distributions.

Our loss function is a distance between two nonparametric density functions with
and without the conditional independence. Such a distance is based on a powerful
nonparametric identification result in the measurement error literature Hu and Schen-
nach/ (2008). (See Hu| (2017) and Schennach (2020) for a review.) It shows that the
joint distribution of a latent variable and its measurements is uniquely determined by
the joint distribution of the observed measurements under a key conditional indepen-
dence assumption, together with other technical restrictions. To measure the distance
between two density functions, the Kullback—Leibler divergence Kullback and Leibler
(1951)) is one of the options, which plays a leading role in machine learning and neuro-

science [Pérez-Cruz| (2008)). A large literature has studied the estimation of the Kull-



back—Leibler divergence |Darbellay and Vajdal (1999)); Moreno, Ho, and Vasconcelos
(2003)); |Wang, Kulkarni, and Verdu (2005)); |Lee and Park]| (2006); Wang, Kulkarni, and
Verdul (2006)); Nguyen, Wainwright, and Jordan| (2010); Nowozin, Cseke, and Tomioka
(2016)); Belghazi, Baratin, Rajeshwar, Ozair, Bengio, Courville, and Hjelm| (2018). We
use a combination of a deep neural network and kernel density estimators to generate
density functions with and without the conditional independence and then compute
their divergence.

In this paper, we make a further argument that the nonparametric identification
of the latent variable distribution implies that the true values in the sample are locally
separable in the continuous case. To the best of our knowledge, this paper is the first
to provide such identification in observation. We expect such identification will change
how researchers deal with latent variables and make our GEEN broadly applicable.

This paper is organized as follows. Section 2 provides the identification arguments.
Section 3 describe the neural network and the algorithm. The Monte Carlo simu-
lations are provided in Section 4. Section 5 presents an application to refine GDP

measurements from official data. Section 6 summarizes the paper.

2 From identification in distribution to identification in ob-

servation

We assume that a researcher observe the distribution of {X*, X2 ..., X*} from a ran-

dom sample. Putting the estimation of the population distribution fx1 x2  x» from

-----

the random sample aside, we face a key identification challenge: How to determine the
distribution fx1 x2 xk x+« from the observed distribution fx1 x2  x». Here we use a

general nonparametric identification result in the measurement error literature.

Theorem 2 [Hu and Schennachl (2008) Under assumptions (1, [3, [, [} and [3 in the
Appendiz, the joint distribution fxi x2  xr uniquely determines the joint distribution

Ix1 x2,. xr x+, which satisfies

Ixtxz xv x = [xvxefxzixe o fxrpxe fxe (1)

This identification result only needs three measurements. Therefore, the condi-

tional independence may be relaxed to

Ixrxe xkx = [xrxefxzix=fxs, . xrx

In the remaining discussion, we still use the conditional independence in equation

because we are interested in the common element X* across all the observables.
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This identification result implies that if we have qualified measurements X', X? and
X3, we are able to provide a consistent estimator of fxi x2 _xr x« from a sample of
(X1 X2 .. XP).

2.1 Identification in observation

Next, we argue that draws of X* are locally identified in the sense that there is no
observationally equivalent uncorrelated deviation from these draws.
Let X} be a random draw of X* in observation ¢ and we define an uncorrelated

deviation from that draw as

where (X, 6;) is a i.i.d. random draw from the joint distribution of (X*,¢). Notice
that if we replace X with X + 4; as the new common element, the variance of
the common element becomes var(X*) + var(d). That means the variance of the
uncorrelated deviation must be different from that of the original X*, i.e., var(X*).
The distribution of X* + ¢ must be different from that of X*. These two different
distributions can not lead to the same observed distribution, fx1 x2 xk, because
Theorem [2 implies that fxi x2 x+ uniquely determines fx-, including its variance
var(X™*). In other words, X* 4 ¢ and X* can not be observationally equivalent given
the sample of (X!, X2, ..., X*). Therefore, the draws of X* are locally identified in the

following sense:

Theorem 3 Suppose that the assumptions in Theorem[3 hold. Given an observed sam-
ple {X}, X2, ..., XF}, which is a subset of the infeasible full sample { X}, X2, ..., XF, X},
no uncorrelated deviation from latent draws X, defined in equation (@, 18 observa-

()

tionally equivalent to X}.

Notice that we only use the identified variance of the latent X* to make this
argument. The results in Theorem [2implies that all the moments of the latent X* are
identified. Therefore, such a local identification result as in Theorem |3|should hold for
more general deviations than the uncorrelated deviations defined in equation ([2)).

Furthermore, we may look at this problem from a different angle. Suppose we insert
generated draws X} in the sample {X}, X2, ..., X} to obtain {X}, X2, .. XF X:}.
And we also suppose that the conditional independence in equation holds with the

generated draws, i.e.,

Ixixe. xrx- = fX1|X*fX2\X* X X ka|f<*zfX*~

bt



In this case, even if )A(Z* is not equal to the true X7 in the infeasible full sample
{X}, X2, ..., XF X7}, our inserted X7 will be observationally equivalent to the true X7
because Theorem [2| guarantees that the distributions fxix«, fx2jx+, and fxs _ xr x=
are uniquely determined by the observed fx1 x2  x». Evenif X" # X, we can still cor-
rectly estimate fyi|x~, fxz/x+, and fxs _ xr x- using sample (X}, X2, ..., X7, Xf)izl 2
with inserted X7, instead of the true values X7.

In addition, Theorem |3 implies that if we add a noise 9; to the inserted X;‘, where
8; is an uncorrelated deviation from X7, the conditional independence fails when X7
is replaced with Xf + ;. That means the inserted draws X;‘ are locally unique among
uncorrelated deviations.

The identification result in Theorem [3| can be extended to the case where §; is un-
correlated with X7 conditional on the observables (X!, X2, ..., X*) because the condi-
tional distribution fx« x1 x2 . x» is identified by Theorem . We define a conditionally
uncorrelated deviation from X as X + 0; with

E(X;6| X} X2 . X)) =B | X} X2 .., XE) =0 (3)

7 72

where (X7, d;, X}, X2, ...,Xf) is a i.i.d. random draw from their corresponding
joint distribution. The variance, and therefore distribution, of X + d; conditional
on (X' X2 .. X") is different from those of fy.x1 x2 _xr. Theorem [2 implies that
they must correspond to different fx1 x2  y». Therefore, there is no observationally
equivalent conditionally uncorrelated deviation from latent draws X*. We summarize

this extension as follows:

Theorem 4 Suppose that the assumptions in Theorem|[g hold. Given an observed sam-
ple {X}, X2, ..., XF}, which is a subset of the infeasible full sample { X}, X2, ..., XF, X7},
no conditionally uncorrelated deviation from latent draws X}, defined in equation (@,
15 observationally equivalent to X' .

2.2 Convergence argument and loss function

Suppose our identification results suggest that our estimates XZ* should have the same
distribution (and variance) as X*. Then the sample moments of X} should converge

to the true moments. We may make a convergence argument as follows:

Theorem 5 Suppose that the estimator X;‘ =X/ +0; fori =1,2,...,N satisfies
1N
NZX:@ = 0,(1). (4)
i=1
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Then, the consistency of the sample variance of X: implies that for any e > 0, the

sample proportion of large deviations goes to zero, i.e.,

> )= %;I(W > ) = o,(1).

We leave the details in the Appendix.

Py (’X e

Finally, the discussion above implies that we can use a loss function measuring
the distance between a general joint distribution p = fx1 x2__x* x+ and a distribution
satisfying conditional independence pe; = fx1|x=fx2|x+--fx*x+fx+ in order to search

for latent draws X. One of the choices is the Kullback-Leibler divergence

D (ot = [ oo (L)

pci(x)

3 Generative Element Extraction Networks (GEEN)

We build a Generative Element Extraction Network (GEEN), G, to generate the
latent realizations of X satisfying the conditional independence. Let V stand for
the vector of draws of variable V in the sample, i.e., X* = (X7, X5, ..., X3)7" and
X7 = (X!, X3,...,X3)T. We generate X* as follows:

X*=GX X% ., Xh. (5)

with X* = (X7, X3, ..., X5)T. The deep neural network G is trained to minimize the

divergence
mGinD (P, Pei) s.t./fo”X*(xu*)dx =z (6)

with p = le’XQ’m’Xk,X* and p. = le‘X*fXQW*...kaIX*fX*, where f are empirical
distribution functions based on sample (X!, X2, ..., X* X*).
Notice that G enters the loss function through X* = (X7, X3, ..., X3)7 in density

estimators. To be specific, we can have a kernel density estimator

fXJ X*(x )
fx-(a)

1 Xj—x h? X —a*)/h*
o) = L 3 KL= G

fXJ|X*(x|5E ) =




le,X2 X’vX*(x1 a?, . ,xk,x)

1mKX*—x h) o K((X hi
_ 52( ( )/ PR =) >>

i=1 j=1

where h stands for bandwidths, N is the total sampled observations, m is the
number of points in each observation and k is the number of features. In the loss
function defined in equation @, it requires more than one data point to estimate the
kernel density function. As a result, unlike other use cases that one training point
is enough to calculate its corresponding loss, we need to sample m (> 1) points as
one observation to calculate its loss. For example, to build the training sample we
sample with replacement m points from the entire training data points and repeat N
times, and we end up with NV observations in our training sample. The same practice
is followed to construct our validation and test samples. The kernel function K (-) can
simply be the standard normal density function. For the bandwidth, we adopt the

1/5

so-called Silverman’s rule, i.e., A/ = wo? N~/5 where ¢/ is the standard error of X7,

and w is the window size that is determined by hyper parameters tuning. Similarly,

/5 where o* is the standard error of X*.

we may take h* = wo* N~

In this paper, we experiment GEEN with multilayer perceptrons (MLPs), but
this framework can be readily applied to other deep neural network architectures. In
our simulations, we impose a convolution structure on X' so that the normalization
condition can be simplified. The parameters of our deep neural network are estimated

by minimizing the loss function:

Loss = D (P, pei) + A ZXI——ZX*

Early stopping is applied when the loss does not improve for certain epochs in
the validation sample. We do not use any information from true X; during training,
validation or hyper parameters tuning. Instead we use the loss defined in the above

equation for validation and true X; are only used for final testing.

4 Simulations

This section presents the performance of our neural network through simulations. We

generate the sample as follows:

X] =m!(X])+¢ (7)



forj=1,2,....,kandi=1,2,..., N. Without loss of generality, we normalize m'(z) = x
and E[e!|X*] = 0. We pick distributions for (¢!, ...,e*, X*) and functions (m?, ..., mF)
to generate a sample (X1, ..., X* X*). We then train G using the observed sample
(X', X2 .. X*) to generate (X!, X2, ..., X* X*). That is X+ = G(X!, X2, ... XF).
We check the performance of G by calculating the correlation coefficient between X*
and )g *

We use a 6-layer with 10 hidden nodes fully connected neural network. The window
size w and normalization term A are tuned as hyper-parameters. We use kernel func-
tions to approximate their density functions. Theoretically if a distribution is normal,
the best choice for w used in the kernel function is 1, so to tune w we choose the range
from 0.5 to 2. To tune A, we arbitrarily choose the range from 0.1 to 0.5. For every
experiment, we run 25 times to evaluate the robustness of model performance on its

initialization. For the baseline case, we use

k=4 e =N(0,1)
m'(z) = x 2 = Beta(2,2) — %
m?(z) = . jex ¢ = Laplace(0,1)
m’(z) = 2’ et = Uniform(0,1) — %
mi(z) =In(l+e”)  X* = N(0,4)

We sample 8000 points as training points from the above distributions for X*, !,
€2, € and €'. Then we sample another 1000 points for validation points and 1000
points for test points. We draw 500 points from the training points with replacement
8000 times to build our training set and 1000 times from the validation/test points to
build our validation/test set. Figure (1| shows the relationship between X!, X2 X3
X% and X*.

In the second experiment, we let the error terms correlate with X* while keeping
the rest setup the same as the baseline. Figure [2| shows the relationship between X!,

X? X3 X*and X* in this one. Specifically, we use:

. 1

e = N(0,~(2%)?) ¢* = Laplace(0, §|$*|)
1 1

et = Uni form(0, §|$*|) - Z|x*‘

In the third experiment, we double the variance of the error terms while keeping

the rest setup the same as the baseline. Figure [3| shows the relationship between X!,

9
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Figure 1: Baseline Training Sample

X2, X3 X*and X* in the third experiment.

el = N(0,4) e = Laplace(0,2)
¢ = Beta(2,4) — % et = Uniform(0,2) — 1

Table [1] demonstrates the min, median and max correlations of X* and )g *in the
test sample for the three experiments after running each one 25 times. Figure [4] shows
their best runs respectively. It is clear that GEEN is robust with initialization with
very tight distributions of the correlations of X* and XAj * and improves significantly if
we simply use X! to directly measure X*.

In the forth experiment, we loose the normalization condition while keeping the
rest setup the same as the baseline. Figure |5 shows the relationship between X!, X2,
X3, X% and X* in this experiment.

mt(z) = 2°+x

With this setup, generated X* is not anchored, and as shown in the left hand side
of Figure [f] its values deviate significantly from X*. However, the KL loss helps keep
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Data in Training Sample
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Figure 2: Linear Error Training Sample

the similarity of the two distributions of generated X* and X*. As shown in the right
hand side of Figure [6, with 25 runs of this experiment most of the absolute values of
the correlation between X* and X* are around 0.9. This suggests that even without

normalization our framework can still help provide an estimation of the direction.

5 Refining official GDP measurements

One of the important applications of our methodology is to reduce measurement errors.
In this case, true values are unobservables X*. X! is a direct measure of X* with the
expected measurement error § as zero. X7 (j # 1) are indirect/direct measures of
X* with unknown function forms of X*. Their error terms can be flexible and do not
necessarily have zero means.

We apply GEEN to refine GDP data using official GDP data (X') and alternative
measures of economic activity, including satellite-recorded nighttime lights
and Google Search Volume [Woloszko (2021) as X2 and X?®. In this experiment,
true GDP (X*) are completely unknown. With GEEN, we demonstrate how our

method can help reduce measurement errors from official GDP data.
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Data in Training Sample
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Figure 3: Double Error Training Sample

Our sample consists of all the developing countries that have quarterly GDP data.

We focus on developing countries because nighttime lights data are more appropriate

for tracking economic activity in those countries (Hu and Yao, |2022; Beyer, Hu, and
, 2022)). To account for time trends common to all countries, we remove time effects
from GDP growth rates with a fixed effect model when training and later add back

the time effects when comparing our model’s performance with official data. We sep-
arate our sample into training and validation subsets, and run training for 100 times
and select the best model with the lowest loss in the validation sample to minimize
the impact of initialization. We do not have the testing dataset, since in this case
true values X* are completely unknown and the model just learns how to generate X*
that can minimize the distance between the two probability densities in equation ({1]).
Therefore, conventional testing method is not applicable here. Instead, we compare
our generated GDP growth rates with official data from the macroeconomic view-
point, which is crucial to reveal systematic differences between official data and true
underlying GDP growth data.

In Figure [7] the left axis is GDP growth rate in percentage points (ppts) and the

right axis marks the difference between the official GDP and our generated underlying

12



Table 1: Summary of Simulation Results

Simulation Name corr(X*, X*) corr(X*, X1)

min median max

Baseline 0.97 0.98 0.98 0.89
Linear Error 0.94 0.96 0.97 0.89
Double Error 0.88 0.89 0.91 0.70

GDP growth rates (Official - GEEN as shown in the plot). Figure|7|shows that refined
GDP data reveal important patterns in official GDP data and are useful in a number
of aspects. First, most countries’ official GDP growth data align well with our refined
estimates. For example, both Chile and South Africa have differences within 0.15
percentage points despite volatile economic growth. It suggests that GEEN could
be useful in leveraging alternative data to understand economic activity of countries
without timely official GDP data.

Second, some countries, such as China and Indonesia, have excessively smooth of-
ficial GDP data compared to our refined estimates. Such excess smoothness might
mask underlying dynamics and volatility of economic activity (for countries like In-
donesia and China, an adjustment of 0.5 percentage points in GDP is considered signif-
icant). Estimates of underlying economic growth could therefore enrich policymakers’
understanding of the state of macroeconomy, including output gap and inflationary
pressures, and inform efficient policy making.

Third, some economies’ official GDP growth data systematically differ from our
refined data. For example, when Lebanon’s economy shrank after 2017, official data
systematically overstated the performance of the economy. By contrast, Jordan’s
official data systematically understated economic growth. A plausible explanation
is the existence of the informal sector that official data do not capture. However,
detecting such difference is an important first step in exploring the reasons behind it,
be it capacity of the statistical agency, recording of the informal sector, or the political
economy.

Results of the refined GDP estimates for the rest countries can be found in the

Appendix.
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Figure 4: Results in the First Three Experiments

6 Conclusion

This paper uses Generative Element Extraction Networks (GEEN) to reveal unob-
served variables in a random sample, which contains multiple measurements of a la-
tent variable of interest. We present the sufficient conditions, under which the joint
distribution of a latent variable and its measurements can be uniquely determined. We
then argue that the true values of the latent variable in the sample are locally unique
in a class of deviations, which allows us to estimate the true values. To the best of
our knowledge, this paper is the first to provide such identification in observation.
Based on the key assumption that the measurements are independent conditional on
the latent variable, we then propose an algorithm to minimize the divergence function
between two probability densities with and without the conditional independence to
train GEEN, which maps from the observed measurements to the true values of the
latent variable in the sample. The simulation results show that this proposed esti-
mator works quite well and the estimated values are highly correlated with the true
values with a correlation coefficient usually higher than 90%. We then use GEEN to
estimate true GDP growth for each developing country using its official GDP growth,
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Data in Training Sample
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Figure 6: Results in No Normalization Experiment

nightlight intensity, and Google search volume. For different types of economies, our
estimates show more meaningful and insightful information than official GDP growth.
We expect the GEEN estimator will change how researchers deal with latent variables

in empirical research.
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A Appendix

A.1 Identification in distribution

This section presents the nonparametric identification results. We assume

Assumption 1 There exists a random variable X* with support X* such that

Ixt x2,. x0 x-
= fX1|X*fX2|X* X ... X fXHX*fX*
We may consider the observables (X1, X2, ..., X*) as measurements of X*. Here
we use Hu and Schennach| (2008)) to show the uniqueness of f(X!, X2 ..., X* X*). We

assume three of the £ measurements are informative enough for the results in [Hu and

Schennach| (2008)). We assume

Assumption 2 The joint distribution of (X', X% ..., X* X*) with k > 3 admits a
bounded density with respect to the product measure of some dominating measure de-

fined on their supports. All marginal and conditional densities are also bounded.

Before introducing more assumptions, we define an integral operator corresponding
to fx1)x+, which maps fx- over support X* to fx1 over support X!, Suppose that we
know both fx« and fy1 are bounded and integrable. We define £}, (X*) as the set of

bounded and integrable functions defined on X*, i.e.,

‘Cl%nd (X*)
= <g: /]g(x*)|dx* < ooand sup |g(z")| < o0
P z*ekX
The linear operator can be defined as
Lxixe + Lppg (X)) = Ly, (X7) (8)

(Lix-h) (2) = / P (zla™)h(a*)da.

In order to identify the unknown distributions, we need the observables to be

informative so that the following assumptions hold.
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Assumption 3 The operators Lxix- and Lx2x1 are mjectiveﬂ
Assumption 4 For all T # T* in X*, the set {a® : fxsx« (23]|T) # fxox- (2%]7%)}
has positive probability.

*

Assumption 5 There exists a known functional M such that M [fX1|X* (\:U*)] ==
for all x* € X*.

The functional M may be the mean, mode, medium, or another quantile of the distri-

bution fyix» (-|z*). The identification result may be summarized as follows:

Theorem 6 [Hu and Schennach| (2008) Under assumptions (1}, 3 [3, [4 and[J in sec-
tion the joint distribution fxi x2  x» uniquely determines the joint distribution

Ix1 x2,. xr x+, which satisfies

fx1 x2,. xk x-
= fX1|X*fX2|X* X ... X fXHX*fX* (9)
A.2 Convergence arguments

We present convergence arguments of our estimator here. Suppose our identification
results suggest that our estimates XZ* should have the same distribution (and variance)
as X. Then the sample moments of Xi* should converges to the true moments. In

other words, we have

T DR - S = (1) (10)

Such a condition implies the consistency of our estimator under following assump-

tions.

Theorem 7 Suppose that the estimator X;‘ =X/ +0; fori =1,2,...,N satisfies

N
1 E *
=1

Then, the consistency of the sample moment in equation (@) implies that for any

e > 0, the sample proportion of large deviations goes to zero, i.e.,

Py (’X e

> )= %;m(m > &) = 0,(1)

2LX2‘X1 is defined in the same way as Ly1|x- in equation .
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Proof: With X} = X} 4 d;, we have

Therefore,

Furthermore, we have

1 & 1 &
~ > (0:) > 62N > I(6)] > )
=1 =1

Therefore, for any € > 0, we have

105 > 9 = 0,1

i=1
|
This result implies that the estimator for each observation is consistent w.r.t the
sampling distribution. Theorem 2.4 in the main paper does not guarantee the consis-
tency of Xf in a given observation, but the probability of a randomly-drew estimator
X7 being consistent should converge to one.
This result can be extended to more general deviations. For example, condition

(11) may be replaced with

N N
1 . 1 9
NZXi 8 =cx NZ(@) +0,(1). (12)
i=1 i=1

where ¢ is a constant satisfying ¢ # —%. That means the identification result
remains in some cases where the deviations are correlated with the true values in the

limit.
A.3 Results for GDP Refinement
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