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Abstract

Latent variable models are crucial in scientific research, where a key variable,

such as true GDP growth in specific countries or individuals’ true earnings, is

unobserved in the sample but needs to be identified. This paper proposes a

novel method for estimating realizations of a latent variable X∗ in a random

sample that contains its multiple measurements. With the key assumption that

the measurements are independent conditional on X∗, we provide sufficient con-

ditions under which X∗ in the sample are locally unique in a class of deviations,

which allows us to identify realizations of X∗. To the best of our knowledge,

this paper is the first to provide such identification in observation. We then use

the divergence function between the two probability densities with and without

the conditional independence as the loss function to train Generative Element

Extraction Networks (GEEN) that map from the observed measurements to re-

alizations of X∗ in the sample. The simulation results show that this proposed

estimator works quite well and the estimated values are highly correlated with

realizations of X∗. We then use GEEN to estimate true GDP growth for each

developing country using such measurements as official GDP growth, nightlight

intensity, and Google search volume. Our estimates show more insightful infor-

mation on the economies than existing measurements. Given that our estimator

can be applied to a large class of latent variable models, we expect it will change

how people deal with latent variables.
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1 Introduction

Unobservables play a crucial role in scientific research because empirical researchers

often encounter a discrepancy between what is described in a model and what is ob-

served in the data. A typical example is the so-called hidden Markov models, where

a series of latent variables are observed with errors in multiple periods under condi-

tional independence assumptions. While there is a huge literature on the estimation of

the model with latent variables (e.g.,Aigner, Hsiao, Kapteyn, and Wansbeek (1984);

Bishop (1998)), this paper focuses on the estimation of realizations of the latent vari-

able, which are not observed anywhere in the data. Suppose that the ideal data

for the estimation of a model is an i.i.d. sample of (X1, X2, ..., Xk, X∗) 1 and that

the researcher only observed (X1, X2, ..., Xk) in the sample. Generally, we consider

Xj, j = 1...k, as multiple measurements of X∗. Under conditional independence as-

sumptions, this paper provides a deep learning method to extract the common element

X∗ from multiple observables (X1, X2, ..., Xk). We build Generative Element Extrac-

tion Networks (GEEN) to reveal realizations or draws of X∗ to achieve a complete

sample of (X1, X2, ..., Xk, X∗) in the sense that the generated draws are observation-

ally equivalent to the true values in the sample.

This paper is different from the imputation method because the latent variable is

not observed anywhere in the sample and needs to be identified. For example, true

earnings of households are not observed anywhere in household survey data, but are

of great interest to know. By contrast, imputation requires at least some observations

of the underlying variable.

Researchers have already applied deep generative models for data imputation.

Yoon, Jordon, and Schaar (2018) creatively use the Generative Adversarial Imputation

Nets (GAIN) to provide an imputation method, in which missing values are estimated

so that they are observationally equivalent to the observed values from the GAIN’s

perspective. Li, Jiang, and Marlin (2019) also propose a GAN-based Goodfellow,

Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio (2014) frame-

work for learning from complex, high-dimensional incomplete data to impute missing

data. Mattei and Frellsen (2019) introduce the missing data importance-weighted

autoencoder for training a deep latent variable model to handle missing-at-random

1We use capital letters to stand for a random variable and lower case letters to stand for the

realization of a random variable. For example, fV (v) stands for the probability density function of

random variable V with realization argument v, and fV |U (v|u) denote the conditional density of V

on U .
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data. Nazabal, Olmos, Ghahramani, and Valera (2020) present a general framework

for Variational Autoencoders (VAEs) Kingma and Welling (2013) that effectively in-

corporates incomplete data and heterogenous observations. Muzellec, Josse, Boyer,

and Cuturi (2020) leverage optimal transport to define a loss function for missing

value imputation. Yoon and Sull (2020) propose a novel Generative Adversarial Mul-

tiple Imputation Network (GAMIN) for highly missing Data. In this literature, latent

spaces are used to represent high-dimensional observations, but are not identifiable

because their latent spaces may vary with parameter initialization. In addition, all the

missing data models require true values to be partially observed.

However, relatively little research has focused on estimating realizations of latent

variables, which are unobserved, or completely missing. In the economics literature,

Kalman filter and structural vector autoregressions have often been used to estimate

the realizations of latent variables, such as potential output Kuttner (1994), natural

rate of interest Laubach and Williams (2003); Holston, Laubach, and Williams (2017),

and natural rate of unemployment King and Morley (2007), but the literature makes

parametric assumptions about the dynamics of latent variables and thus belongs to

the estimation of models with latent variables.

In our setting, we argue that the conditional independence restrictions imply the

local identification of the true values. That allows us to provide an estimator in the

continuous case. Our method is nonparametric in the sense that we do not assume

the distribution of the variables belong to a parametric family as in the widely-used

VAEs Kingma and Welling (2013), which use the so-called Evidence Lower Bound

(ELBO) to provide a tractable unbiased Monte Carlo estimator. The VAEs focus on

the estimation of a parametric model. In this paper, we focus on the estimation of the

true values in each observation in the sample without imposing a parametric structure

on the distributions.

Our loss function is a distance between two nonparametric density functions with

and without the conditional independence. Such a distance is based on a powerful

nonparametric identification result in the measurement error literature Hu and Schen-

nach (2008). (See Hu (2017) and Schennach (2020) for a review.) It shows that the

joint distribution of a latent variable and its measurements is uniquely determined by

the joint distribution of the observed measurements under a key conditional indepen-

dence assumption, together with other technical restrictions. To measure the distance

between two density functions, the Kullback–Leibler divergence Kullback and Leibler

(1951) is one of the options, which plays a leading role in machine learning and neuro-

science Pérez-Cruz (2008). A large literature has studied the estimation of the Kull-
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back–Leibler divergence Darbellay and Vajda (1999); Moreno, Ho, and Vasconcelos

(2003); Wang, Kulkarni, and Verdú (2005); Lee and Park (2006); Wang, Kulkarni, and

Verdú (2006); Nguyen, Wainwright, and Jordan (2010); Nowozin, Cseke, and Tomioka

(2016); Belghazi, Baratin, Rajeshwar, Ozair, Bengio, Courville, and Hjelm (2018). We

use a combination of a deep neural network and kernel density estimators to generate

density functions with and without the conditional independence and then compute

their divergence.

In this paper, we make a further argument that the nonparametric identification

of the latent variable distribution implies that the true values in the sample are locally

separable in the continuous case. To the best of our knowledge, this paper is the first

to provide such identification in observation. We expect such identification will change

how researchers deal with latent variables and make our GEEN broadly applicable.

This paper is organized as follows. Section 2 provides the identification arguments.

Section 3 describe the neural network and the algorithm. The Monte Carlo simu-

lations are provided in Section 4. Section 5 presents an application to refine GDP

measurements from official data. Section 6 summarizes the paper.

2 From identification in distribution to identification in ob-

servation

We assume that a researcher observe the distribution of {X1, X2, ..., Xk} from a ran-

dom sample. Putting the estimation of the population distribution fX1,X2,...,Xk from

the random sample aside, we face a key identification challenge: How to determine the

distribution fX1,X2,...,Xk,X∗ from the observed distribution fX1,X2,...,Xk . Here we use a

general nonparametric identification result in the measurement error literature.

Theorem 2 Hu and Schennach (2008) Under assumptions 1, 2, 3, 4, and 5 in the

Appendix, the joint distribution fX1,X2,...,Xk uniquely determines the joint distribution

fX1,X2,...,Xk,X∗, which satisfies

fX1,X2,...,Xk,X∗ = fX1|X∗fX2|X∗ · ... · fXk|X∗fX∗ . (1)

This identification result only needs three measurements. Therefore, the condi-

tional independence may be relaxed to

fX1,X2,...,Xk,X∗ = fX1|X∗fX2|X∗fX3,...,Xk,X∗ .

In the remaining discussion, we still use the conditional independence in equation

(1) because we are interested in the common element X∗ across all the observables.
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This identification result implies that if we have qualified measurements X1, X2 and

X3, we are able to provide a consistent estimator of fX1,X2,...,Xk,X∗ from a sample of

(X1, X2, ..., Xk).

2.1 Identification in observation

Next, we argue that draws of X∗ are locally identified in the sense that there is no

observationally equivalent uncorrelated deviation from these draws.

Let X∗
i be a random draw of X∗ in observation i and we define an uncorrelated

deviation from that draw as

X∗
i + δi with E(X∗

i δi) = E(δi) = 0 (2)

where (X∗
i , δi) is a i.i.d. random draw from the joint distribution of (X∗, δ). Notice

that if we replace X∗
i with X∗

i + δi as the new common element, the variance of

the common element becomes var(X∗) + var(δ). That means the variance of the

uncorrelated deviation must be different from that of the original X∗, i.e., var(X∗).

The distribution of X∗ + δ must be different from that of X∗. These two different

distributions can not lead to the same observed distribution, fX1,X2,...,Xk , because

Theorem 2 implies that fX1,X2,...,Xk uniquely determines fX∗ , including its variance

var(X∗). In other words, X∗ + δ and X∗ can not be observationally equivalent given

the sample of (X1, X2, ..., Xk). Therefore, the draws of X∗ are locally identified in the

following sense:

Theorem 3 Suppose that the assumptions in Theorem 2 hold. Given an observed sam-

ple {X1
i , X

2
i , ..., X

k
i }, which is a subset of the infeasible full sample {X1

i , X
2
i , ..., X

k
i , X

∗
i },

no uncorrelated deviation from latent draws X∗
i , defined in equation (2), is observa-

tionally equivalent to X∗
i .

Notice that we only use the identified variance of the latent X∗ to make this

argument. The results in Theorem 2 implies that all the moments of the latent X∗ are

identified. Therefore, such a local identification result as in Theorem 3 should hold for

more general deviations than the uncorrelated deviations defined in equation (2).

Furthermore, we may look at this problem from a different angle. Suppose we insert

generated draws X̂∗
i in the sample {X1

i , X
2
i , ..., X

k
i } to obtain {X1

i , X
2
i , ..., X

k
i , X̂

∗
i }.

And we also suppose that the conditional independence in equation (1) holds with the

generated draws, i.e.,

fX1,X2,...,Xk,X̂∗ = fX1|X̂∗fX2|X̂∗ × ...× fXk|X̂∗zfX̂∗ .
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In this case, even if X̂∗
i is not equal to the true X∗

i in the infeasible full sample

{X1
i , X

2
i , ..., X

k
i , X

∗
i }, our inserted X̂∗

i will be observationally equivalent to the true X∗
i

because Theorem 2 guarantees that the distributions fX1|X∗ , fX2|X∗ , and fX3,...,Xk,X∗

are uniquely determined by the observed fX1,X2,...,Xk . Even if X̂∗
i ̸= X∗

i , we can still cor-

rectly estimate fX1|X∗ , fX2|X∗ , and fX3,...,Xk,X∗ using sample (X1
i , X

2
i , ..., X

k
i , X̂

∗
i )i=1,2,...,N

with inserted X̂∗
i , instead of the true values X∗

i .

In addition, Theorem 3 implies that if we add a noise δi to the inserted X̂∗
i , where

δi is an uncorrelated deviation from X̂∗
i , the conditional independence fails when X̂∗

i

is replaced with X̂∗
i + δi. That means the inserted draws X̂∗

i are locally unique among

uncorrelated deviations.

The identification result in Theorem 3 can be extended to the case where δi is un-

correlated with X∗
i conditional on the observables (X1, X2, ..., Xk) because the condi-

tional distribution fX∗|X1,X2,...,Xk is identified by Theorem 2. We define a conditionally

uncorrelated deviation from X∗
i as X∗

i + δi with

E(X∗
i δi |X1

i , X
2
i , ..., X

k
i ) = E(δi |X1

i , X
2
i , ..., X

k
i ) = 0 (3)

where (X∗
i , δi, X

1
i , X

2
i , ..., X

k
i ) is a i.i.d. random draw from their corresponding

joint distribution. The variance, and therefore distribution, of X∗
i + δi conditional

on (X1, X2, ..., Xk) is different from those of fX∗|X1,X2,...,Xk . Theorem 2 implies that

they must correspond to different fX1,X2,...,Xk . Therefore, there is no observationally

equivalent conditionally uncorrelated deviation from latent draws X∗
i . We summarize

this extension as follows:

Theorem 4 Suppose that the assumptions in Theorem 2 hold. Given an observed sam-

ple {X1
i , X

2
i , ..., X

k
i }, which is a subset of the infeasible full sample {X1

i , X
2
i , ..., X

k
i , X

∗
i },

no conditionally uncorrelated deviation from latent draws X∗
i , defined in equation (3),

is observationally equivalent to X∗
i .

2.2 Convergence argument and loss function

Suppose our identification results suggest that our estimates X̂∗
i should have the same

distribution (and variance) as X∗
i . Then the sample moments of X̂∗

i should converge

to the true moments. We may make a convergence argument as follows:

Theorem 5 Suppose that the estimator X̂∗
i = X∗

i + δi for i = 1, 2, ..., N satisfies

1

N

N∑
i=1

X∗
i δi = op(1). (4)
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Then, the consistency of the sample variance of X̂∗
i implies that for any ϵ > 0, the

sample proportion of large deviations goes to zero, i.e.,

PN

(∣∣∣X̂∗
i −X∗

i

∣∣∣ > ϵ
)
:=

1

N

N∑
i=1

I(|δi| > ϵ) = op(1).

We leave the details in the Appendix.

Finally, the discussion above implies that we can use a loss function measuring

the distance between a general joint distribution p = fX1,X2,...,Xk,X∗ and a distribution

satisfying conditional independence pci = fX1|X∗fX2|X∗ ...fXk|X∗fX∗ in order to search

for latent draws X∗
i . One of the choices is the Kullback–Leibler divergence

DKL (p(x)||pci(x)) =
∫

p(x) ln

(
p(x)

pci(x)

)
dx.

3 Generative Element Extraction Networks (GEEN)

We build a Generative Element Extraction Network (GEEN), G, to generate the

latent realizations of X∗
i satisfying the conditional independence. Let V⃗ stand for

the vector of draws of variable V in the sample, i.e., X⃗∗ = (X∗
1 , X

∗
2 , ..., X

∗
N)

T and

X⃗j = (Xj
1 , X

j
2 , ..., X

j
N)

T . We generate
⃗̂
X∗ as follows:

⃗̂
X∗ = G(X⃗1, X⃗2, ..., X⃗k). (5)

with
⃗̂
X∗ = (X̂∗

1 , X̂
∗
2 , ..., X̂

∗
N)

T . The deep neural network G is trained to minimize the

divergence

min
G

D (p̂ , p̂ci) s.t.

∫
xf̂X1|X̂∗(x|x∗)dx = x∗ (6)

with p̂ = f̂X1,X2,...,Xk,X̂∗ and p̂ci = f̂X1|X̂∗ f̂X2|X̂∗ ...f̂Xk|X̂∗ f̂X̂∗ , where f̂ are empirical

distribution functions based on sample (X⃗1, X⃗2, ..., X⃗k,
⃗̂
X∗).

Notice that G enters the loss function through
⃗̂
X∗ = (X̂∗

1 , X̂
∗
2 , ..., X̂

∗
N)

T in density

estimators. To be specific, we can have a kernel density estimator

f̂Xj |X̂∗(x|x∗) =
f̂Xj ,X̂∗(x, x∗)

f̂X̂∗(x∗)

f̂Xj ,X̂∗(x, x
∗) =

1

m

m∑
i=1

K((Xj
i − x)/hj)

hj

K((X̂∗
i − x∗)/h∗)

h∗

f̂X̂∗(x
∗) =

1

m

m∑
i=1

K((X̂∗
i − x∗)/h∗)

h∗
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f̂X1,X2,...,Xk,X̂∗(x
1, x2, ..., xk, x∗)

=
1

m

m∑
i=1

(
K((X̂∗

i − x∗)/h∗)

h∗

k∏
j=1

K((Xj
i − xj)/hj)

hj

)

where h stands for bandwidths, N is the total sampled observations, m is the

number of points in each observation and k is the number of features. In the loss

function defined in equation (6), it requires more than one data point to estimate the

kernel density function. As a result, unlike other use cases that one training point

is enough to calculate its corresponding loss, we need to sample m (> 1) points as

one observation to calculate its loss. For example, to build the training sample we

sample with replacement m points from the entire training data points and repeat N

times, and we end up with N observations in our training sample. The same practice

is followed to construct our validation and test samples. The kernel function K(·) can
simply be the standard normal density function. For the bandwidth, we adopt the

so-called Silverman’s rule, i.e., hj = wσjN−1/5 where σj is the standard error of Xj,

and w is the window size that is determined by hyper parameters tuning. Similarly,

we may take h∗ = wσ∗N−1/5, where σ∗ is the standard error of X∗.

In this paper, we experiment GEEN with multilayer perceptrons (MLPs), but

this framework can be readily applied to other deep neural network architectures. In

our simulations, we impose a convolution structure on X1 so that the normalization

condition can be simplified. The parameters of our deep neural network are estimated

by minimizing the loss function:

Loss = D (p̂ , p̂ci) + λ

∣∣∣∣∣ 1N
N∑
i=1

X1
i −

1

N

N∑
i=1

X̂∗
i

∣∣∣∣∣
2

Early stopping is applied when the loss does not improve for certain epochs in

the validation sample. We do not use any information from true X∗
i during training,

validation or hyper parameters tuning. Instead we use the loss defined in the above

equation for validation and true X∗
i are only used for final testing.

4 Simulations

This section presents the performance of our neural network through simulations. We

generate the sample as follows:

Xj
i = mj(X∗

i ) + ϵji (7)
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for j = 1, 2, ..., k and i = 1, 2, ..., N . Without loss of generality, we normalizem1(x) = x

and E[ϵ1|X∗] = 0. We pick distributions for (ϵ1, ..., ϵk, X∗) and functions (m2, ...,mk)

to generate a sample (X1, ..., Xk, X∗). We then train G using the observed sample

(X⃗1, X⃗2, ..., X⃗k) to generate (X⃗1, X⃗2, ..., X⃗k, X̂∗). That is
⃗̂
X∗ = G(X⃗1, X⃗2, ..., X⃗k).

We check the performance of G by calculating the correlation coefficient between X⃗∗

and
⃗̂
X∗.

We use a 6-layer with 10 hidden nodes fully connected neural network. The window

size w and normalization term λ are tuned as hyper-parameters. We use kernel func-

tions to approximate their density functions. Theoretically if a distribution is normal,

the best choice for w used in the kernel function is 1, so to tune w we choose the range

from 0.5 to 2. To tune λ, we arbitrarily choose the range from 0.1 to 0.5. For every

experiment, we run 25 times to evaluate the robustness of model performance on its

initialization. For the baseline case, we use

k = 4

m1(x) = x

m2(x) =
1

1 + ex

m3(x) = x2

m4(x) = ln(1 + ex)

ϵ1 = N(0, 1)

ϵ2 = Beta(2, 2)− 1

2

ϵ3 = Laplace(0, 1)

ϵ4 = Uniform(0, 1)− 1

2

X∗ = N(0, 4)

We sample 8000 points as training points from the above distributions for X∗, ϵ1,

ϵ2, ϵ3 and ϵ4. Then we sample another 1000 points for validation points and 1000

points for test points. We draw 500 points from the training points with replacement

8000 times to build our training set and 1000 times from the validation/test points to

build our validation/test set. Figure 1 shows the relationship between X1, X2, X3,

X4 and X∗.

In the second experiment, we let the error terms correlate with X∗ while keeping

the rest setup the same as the baseline. Figure 2 shows the relationship between X1,

X2, X3, X4 and X∗ in this one. Specifically, we use:

ϵ1 = N(0,
1

4
(x∗)2)

ϵ4 = Uniform(0,
1

2
|x∗|)− 1

4
|x∗|

ϵ3 = Laplace(0,
1

2
|x∗|)

In the third experiment, we double the variance of the error terms while keeping

the rest setup the same as the baseline. Figure 3 shows the relationship between X1,
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Figure 1: Baseline Training Sample

X2, X3, X4 and X∗ in the third experiment.

ϵ1 = N(0, 4)

ϵ2 = Beta(2, 4)− 1

3

ϵ3 = Laplace(0, 2)

ϵ4 = Uniform(0, 2)− 1

Table 1 demonstrates the min, median and max correlations of X⃗∗ and
⃗̂
X∗ in the

test sample for the three experiments after running each one 25 times. Figure 4 shows

their best runs respectively. It is clear that GEEN is robust with initialization with

very tight distributions of the correlations of X⃗∗ and
⃗̂
X∗ and improves significantly if

we simply use X1 to directly measure X∗.

In the forth experiment, we loose the normalization condition while keeping the

rest setup the same as the baseline. Figure 5 shows the relationship between X1, X2,

X3, X4 and X∗ in this experiment.

m1(x) = x2 + x

With this setup, generated X̂∗ is not anchored, and as shown in the left hand side

of Figure 6 its values deviate significantly from X∗. However, the KL loss helps keep

10



Figure 2: Linear Error Training Sample

the similarity of the two distributions of generated X̂∗ and X∗. As shown in the right

hand side of Figure 6, with 25 runs of this experiment most of the absolute values of

the correlation between X⃗∗ and
⃗̂
X∗ are around 0.9. This suggests that even without

normalization our framework can still help provide an estimation of the direction.

5 Refining official GDP measurements

One of the important applications of our methodology is to reduce measurement errors.

In this case, true values are unobservables X∗. X1 is a direct measure of X∗ with the

expected measurement error δ as zero. Xj (j ̸= 1) are indirect/direct measures of

X∗ with unknown function forms of X∗. Their error terms can be flexible and do not

necessarily have zero means.

We apply GEEN to refine GDP data using official GDP data (X1) and alternative

measures of economic activity, including satellite-recorded nighttime lights Hu and Yao

(2022) and Google Search Volume Woloszko (2021) as X2 and X3. In this experiment,

true GDP (X∗) are completely unknown. With GEEN, we demonstrate how our

method can help reduce measurement errors from official GDP data.
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Figure 3: Double Error Training Sample

Our sample consists of all the developing countries that have quarterly GDP data.

We focus on developing countries because nighttime lights data are more appropriate

for tracking economic activity in those countries (Hu and Yao, 2022; Beyer, Hu, and

Yao, 2022). To account for time trends common to all countries, we remove time effects

from GDP growth rates with a fixed effect model when training and later add back

the time effects when comparing our model’s performance with official data. We sep-

arate our sample into training and validation subsets, and run training for 100 times

and select the best model with the lowest loss in the validation sample to minimize

the impact of initialization. We do not have the testing dataset, since in this case

true values X∗ are completely unknown and the model just learns how to generate X∗

that can minimize the distance between the two probability densities in equation (1).

Therefore, conventional testing method is not applicable here. Instead, we compare

our generated GDP growth rates with official data from the macroeconomic view-

point, which is crucial to reveal systematic differences between official data and true

underlying GDP growth data.

In Figure 7, the left axis is GDP growth rate in percentage points (ppts) and the

right axis marks the difference between the official GDP and our generated underlying

12



Table 1: Summary of Simulation Results

Simulation Name corr(X⃗∗,
⃗̂
X∗) corr(X⃗∗, X⃗1)

min median max

Baseline 0.97 0.98 0.98 0.89

Linear Error 0.94 0.96 0.97 0.89

Double Error 0.88 0.89 0.91 0.70

GDP growth rates (Official - GEEN as shown in the plot). Figure 7 shows that refined

GDP data reveal important patterns in official GDP data and are useful in a number

of aspects. First, most countries’ official GDP growth data align well with our refined

estimates. For example, both Chile and South Africa have differences within 0.15

percentage points despite volatile economic growth. It suggests that GEEN could

be useful in leveraging alternative data to understand economic activity of countries

without timely official GDP data.

Second, some countries, such as China and Indonesia, have excessively smooth of-

ficial GDP data compared to our refined estimates. Such excess smoothness might

mask underlying dynamics and volatility of economic activity (for countries like In-

donesia and China, an adjustment of 0.5 percentage points in GDP is considered signif-

icant). Estimates of underlying economic growth could therefore enrich policymakers’

understanding of the state of macroeconomy, including output gap and inflationary

pressures, and inform efficient policy making.

Third, some economies’ official GDP growth data systematically differ from our

refined data. For example, when Lebanon’s economy shrank after 2017, official data

systematically overstated the performance of the economy. By contrast, Jordan’s

official data systematically understated economic growth. A plausible explanation

is the existence of the informal sector that official data do not capture. However,

detecting such difference is an important first step in exploring the reasons behind it,

be it capacity of the statistical agency, recording of the informal sector, or the political

economy.

Results of the refined GDP estimates for the rest countries can be found in the

Appendix.
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Figure 4: Results in the First Three Experiments

6 Conclusion

This paper uses Generative Element Extraction Networks (GEEN) to reveal unob-

served variables in a random sample, which contains multiple measurements of a la-

tent variable of interest. We present the sufficient conditions, under which the joint

distribution of a latent variable and its measurements can be uniquely determined. We

then argue that the true values of the latent variable in the sample are locally unique

in a class of deviations, which allows us to estimate the true values. To the best of

our knowledge, this paper is the first to provide such identification in observation.

Based on the key assumption that the measurements are independent conditional on

the latent variable, we then propose an algorithm to minimize the divergence function

between two probability densities with and without the conditional independence to

train GEEN, which maps from the observed measurements to the true values of the

latent variable in the sample. The simulation results show that this proposed esti-

mator works quite well and the estimated values are highly correlated with the true

values with a correlation coefficient usually higher than 90%. We then use GEEN to

estimate true GDP growth for each developing country using its official GDP growth,

14



Figure 5: No Normalization Training Sample

Figure 6: Results in No Normalization Experiment

nightlight intensity, and Google search volume. For different types of economies, our

estimates show more meaningful and insightful information than official GDP growth.

We expect the GEEN estimator will change how researchers deal with latent variables

in empirical research.
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Figure 7: Country Examples of Official and GEEN-refined GDP Growth

16



References

Aigner, D. J., C. Hsiao, A. Kapteyn, and T. Wansbeek (1984): “Latent

variable models in econometrics,” Handbook of econometrics, 2, 1321–1393.

Belghazi, M. I., A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio,

A. Courville, and D. Hjelm (2018): “Mutual information neural estimation,”

in International conference on machine learning, pp. 531–540. PMLR.

Beyer, R., Y. Hu, and J. Yao (2022): “Measuring Quarterly Economic Growth

from Outer Space,” .

Bishop, C. M. (1998): “Latent variable models,” in Learning in graphical models,

pp. 371–403. Springer.

Darbellay, G. A., and I. Vajda (1999): “Estimation of the information by an

adaptive partitioning of the observation space,” IEEE Transactions on Information

Theory, 45(4), 1315–1321.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio (2014): “Generative adversarial nets,”

Advances in neural information processing systems, 27.

Holston, K., T. Laubach, and J. C. Williams (2017): “Measuring the natural

rate of interest: International trends and determinants,” Journal of International

Economics, 108, S59–S75.

Hu, Y. (2017): “The econometrics of unobservables: Applications of measurement

error models in empirical industrial organization and labor economics,” Journal of

econometrics, 200(2), 154–168.

Hu, Y., and S. M. Schennach (2008): “Instrumental variable treatment of non-

classical measurement error models,” Econometrica, 76(1), 195–216.

Hu, Y., and J. Yao (2022): “Illuminating economic growth,” Journal of Economet-

rics, 228(2), 359–378.

King, T. B., and J. Morley (2007): “In search of the natural rate of unemploy-

ment,” Journal of Monetary Economics, 54(2), 550–564.

Kingma, D. P., and M. Welling (2013): “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114.

17



Kullback, S., and R. A. Leibler (1951): “On information and sufficiency,” The

annals of mathematical statistics, 22(1), 79–86.

Kuttner, K. N. (1994): “Estimating potential output as a latent variable,” Journal

of business & economic statistics, 12(3), 361–368.

Laubach, T., and J. C. Williams (2003): “Measuring the natural rate of interest,”

Review of Economics and Statistics, 85(4), 1063–1070.

Lee, Y. K., and B. U. Park (2006): “Estimation of Kullback–Leibler divergence by

local likelihood,” Annals of the Institute of Statistical Mathematics, 58(2), 327–340.

Li, S. C.-X., B. Jiang, and B. Marlin (2019): “Misgan: Learning from incomplete

data with generative adversarial networks,” arXiv preprint arXiv:1902.09599.

Mattei, P.-A., and J. Frellsen (2019): “MIWAE: Deep generative modelling

and imputation of incomplete data sets,” in International conference on machine

learning, pp. 4413–4423. PMLR.

Moreno, P., P. Ho, and N. Vasconcelos (2003): “A Kullback-Leibler divergence

based kernel for SVM classification in multimedia applications,” Advances in neural

information processing systems, 16.

Muzellec, B., J. Josse, C. Boyer, and M. Cuturi (2020): “Missing data impu-

tation using optimal transport,” in International Conference on Machine Learning,

pp. 7130–7140. PMLR.

Nazabal, A., P. M. Olmos, Z. Ghahramani, and I. Valera (2020): “Handling

incomplete heterogeneous data using vaes,” Pattern Recognition, 107, 107501.

Nguyen, X., M. J. Wainwright, and M. I. Jordan (2010): “Estimating di-

vergence functionals and the likelihood ratio by convex risk minimization,” IEEE

Transactions on Information Theory, 56(11), 5847–5861.

Nowozin, S., B. Cseke, and R. Tomioka (2016): “f-gan: Training generative

neural samplers using variational divergence minimization,” Advances in neural in-

formation processing systems, 29.
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A Appendix

A.1 Identification in distribution

This section presents the nonparametric identification results. We assume

Assumption 1 There exists a random variable X∗ with support X ∗ such that

fX1,X2,...,Xk,X∗

= fX1|X∗fX2|X∗ × ...× fXk|X∗fX∗

We may consider the observables (X1, X2, ..., Xk) as measurements of X∗. Here

we use Hu and Schennach (2008) to show the uniqueness of f(X1, X2, ..., Xk, X∗). We

assume three of the k measurements are informative enough for the results in Hu and

Schennach (2008). We assume

Assumption 2 The joint distribution of (X1, X2, ..., Xk, X∗) with k ≥ 3 admits a

bounded density with respect to the product measure of some dominating measure de-

fined on their supports. All marginal and conditional densities are also bounded.

Before introducing more assumptions, we define an integral operator corresponding

to fX1|X∗ , which maps fX∗ over support X ∗ to fX1 over support X 1. Suppose that we

know both fX∗ and fX1 are bounded and integrable. We define L1
bnd (X ∗) as the set of

bounded and integrable functions defined on X ∗, i.e.,

L1
bnd (X ∗)

=

g :

∫
X ∗

|g(x∗)| dx∗ < ∞ and sup
x∗∈X ∗

|g(x∗)| < ∞

 .

The linear operator can be defined as

LX1|X∗ : L1
bnd (X ∗) → L1

bnd

(
X 1
)

(8)(
LX1|X∗h

)
(x) =

∫
X ∗

fX1|X∗(x|x∗)h(x∗)dx∗.

In order to identify the unknown distributions, we need the observables to be

informative so that the following assumptions hold.
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Assumption 3 The operators LX1|X∗ and LX2|X1 are injective.2

Assumption 4 For all x∗ ̸= x̃∗ in X ∗, the set
{
x3 : fX3|X∗ (x3|x∗) ̸= fX3|X∗ (x3|x̃∗)

}
has positive probability.

Assumption 5 There exists a known functional M such that M
[
fX1|X∗ (·|x∗)

]
= x∗

for all x∗ ∈ X ∗.

The functional M may be the mean, mode, medium, or another quantile of the distri-

bution fX1|X∗ (·|x∗). The identification result may be summarized as follows:

Theorem 6 Hu and Schennach (2008) Under assumptions 1, 2, 3, 4, and 5 in sec-

tion A.1, the joint distribution fX1,X2,...,Xk uniquely determines the joint distribution

fX1,X2,...,Xk,X∗, which satisfies

fX1,X2,...,Xk,X∗

= fX1|X∗fX2|X∗ × ...× fXk|X∗fX∗ . (9)

A.2 Convergence arguments

We present convergence arguments of our estimator here. Suppose our identification

results suggest that our estimates X̂∗
i should have the same distribution (and variance)

as X∗
i . Then the sample moments of X̂∗

i should converges to the true moments. In

other words, we have

1

N

N∑
i=1

(X̂∗
i )

2 − 1

N

N∑
i=1

(X∗
i )

2 = op(1) (10)

Such a condition implies the consistency of our estimator under following assump-

tions.

Theorem 7 Suppose that the estimator X̂∗
i = X∗

i + δi for i = 1, 2, ..., N satisfies

1

N

N∑
i=1

X∗
i δi = op(1). (11)

Then, the consistency of the sample moment in equation (10) implies that for any

ϵ > 0, the sample proportion of large deviations goes to zero, i.e.,

PN

(∣∣∣X̂∗
i −X∗

i

∣∣∣ > ϵ
)
:=

1

N

N∑
i=1

I(|δi| > ϵ) = op(1)

2LX2|X1 is defined in the same way as LX1|X∗ in equation (8).
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Proof: With X̂∗
i = X∗

i + δi, we have

1

N

N∑
i=1

(X̂∗
i )

2 − 1

N

N∑
i=1

(X∗
i )

2

= 2
1

N

N∑
i=1

X∗
i δi +

1

N

N∑
i=1

(δi)
2

= op(1) +
1

N

N∑
i=1

(δi)
2

= op(1)

Therefore,

1

N

N∑
i=1

(δi)
2 = op(1)

Furthermore, we have

1

N

N∑
i=1

(δi)
2 > ϵ2

1

N

N∑
i=1

I(|δi| > ϵ)

Therefore, for any ϵ > 0, we have

1

N

N∑
i=1

I(|δi| > ϵ) = op(1)

■

This result implies that the estimator for each observation is consistent w.r.t the

sampling distribution. Theorem 2.4 in the main paper does not guarantee the consis-

tency of X̂∗
i in a given observation, but the probability of a randomly-drew estimator

X̂∗
i being consistent should converge to one.

This result can be extended to more general deviations. For example, condition

(11) may be replaced with

1

N

N∑
i=1

X∗
i δi = c× 1

N

N∑
i=1

(δi)
2 + op(1). (12)

where c is a constant satisfying c ̸= −1
2
. That means the identification result

remains in some cases where the deviations are correlated with the true values in the

limit.

A.3 Results for GDP Refinement
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Figure 8: Official GDP and Generated Underlying GDP
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