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When information acquisition is costly but flexible, a principal may rationally acquire information that favors

“majorities” over “minorities” unless the latter are strictly more productive than the former (the relative size of

the groups plays no actual role). Majorities therefore face incentives to invest in becoming productive, whereas

minorities are discouraged from such investments. The principal, in turn, focuses scarce attentional resources

on majorities precisely because they are likely to invest. We give conditions under which a discriminatory

equilibrium arises and is most preferred by the principal, despite that all groups are ex-ante identical. Our

results have policy and welfare implications, as they add to the discussion of affirmative action, as well as the

empirical literature on implicit bias, discrimination in subjective performance evaluation, and occupational

segregation and stereotypes.
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1 INTRODUCTION
We propose a new model of statistical discrimination. A demographic group is discriminated

against in the labor market because its members rationally choose to underinvest in the skills

needed to succeed. Their choice is reinforced by the endogenous allocation of an employer’s limited

attention across groups, based on which beliefs are formed, and labor market decisions are made.

In equilibrium, discriminatory (biased) attention allocation and beliefs can be optimal given the

differing investments in skills between groups, who are ex-ante identical. Under some conditions,

discriminatory equilibria are the most profitable to the employer.

The theory of statistical discrimination posits that groups of individuals with certain demographic

traits are discriminated against in the labor market, because employers correctly infer that these

groups should be treated differently. As an explanation for discrimination, it does not rely on bias

or adversarial feelings towards discriminated groups, although both bias and rational beliefs may

play a role in any given real-world instance of discrimination.

Economists have put forward two canonical models of statistical discrimination: the Arrovian

model of coordination failure, and the Phelpsian model of information heterogeneity. Arrow [1971,

1998] argues that discrimination may arise as the result of coordination failure. One demographic

collective, call it Group 1, expects to be discriminated against, and therefore does not undertake the

costly investments that are needed to succeed in the labor market. Group 2 expects to be favored,

and therefore finds it worthwhile to invest. Employers, in turn, rationally discriminate against

Group 1 in favor of Group 2 because the latter is expected to invest and the former is not.

The second canonical model follows Phelps [1972] (see also Aigner and Cain, 1977) to argue

that statistical discrimination emerges from differing qualities of information. Groups 1 and 2 have

the same, exogenous, skill distribution, but employers have access to better-quality information

about members of Group 2 than of Group 1. As a result, members of Group 2 enjoy, on average, a

favorable treatment in the labor market.

The current paper combines ideas from the canonical Arrovian and Phelpsian models, with the

chief aim of endogenizing employer’s acquisition of information about workers’ skills. In our story,

workers choose whether to undertake a costly investment that results in an increased likelihood

of being productive. An employer chooses a labor market outcome (a promotion decision, in our

model), based on his endogenously-gleaned information about workers’ productivity. Specifically,

we borrow from the recent literature on rational inattention [Sims, 2003], to model how an employer

chooses a costly signal structure that will inform him about workers’ productivity. In equilibrium,

workers’ incentives to invest are affected by how they expect to be rewarded by the employer,

a decision that is filtered through the endogenously-chosen information structure. In turn, the

employer chooses an optimal information structure and labor market outcome, given his belief

about workers’ investment decisions.

We first demonstrate that there always exists an impartial equilibrium, one that is analogous to

the equilibria without coordination failure in Arrow’s model, but with the new feature that the

information structure endogenously chosen by the employer is also impartial about groups. In an

impartial equilibrium, there is neither Arrovian coordination failure nor Phelpsian information

heterogeneity.

Our main results describe the emergence of a discriminatory equilibrium, one that is not impartial.

In a discriminatory equilibrium, members of different groups face different incentives to undertake

costly investments. Again, as in Arrow, some groups choose not to invest because they are not

expected to, while others do invest, and correctly expect to be rewarded. In our model, however,

workers’ differing investment decisions are mirrored in the employer’s choice of a discriminatory

information structure—one that favors the group who chooses to invest, unless the underinvested
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group is strictly more productive than the former. In this way, the employer can efficiently deploy

his limited attentional resources according to workers’ investment decisions, focusing mainly

on whether the underinvested group surprises him with a genuinely outstanding outcome. The

resulting belief favors the invested groupmost of the time, and thus reinforces workers’ expectations

that they will be treated differently. The vicious circle is closed when Arrow meets Phelps.
The following diagram illustrates the model’s behavior, as a function of an attention cost param-

eter that captures how costly it is for the employer to acquire information:

Attention cost

Unique impartial

eq., low worker

investment

Unique impartial

eq., high worker

investment

Discriminatory

equilibrium

Employer prefers

discriminatory eq.

Our model exhibits two regimes: one in which the only equilibrium is impartial, and one where an

impartial equilibrium and a discriminatory equilibrium coexist. The impartial equilibrium features

high worker investments when the attention cost parameter is low, and low investments when the

attention cost is high. A discriminatory equilibrium emerges when the attention cost parameter is

intermediate, and it constitutes the most profitable equilibrium to the employer when it coexists

with an impartial equilibrium that induces low worker investments.

The takeaways from this diagram are twofold. First, a discriminatory equilibrium can emerge

in a model where a discriminatory information structure is chosen endogenously, and provides

different groups of workers with different incentives to undertake costly investments. The workers

are ex-ante identical, but are nonetheless treated differently in equilibrium.

Second, and most importantly, the discriminatory equilibrium may be strictly preferred by the

employer to the impartial equilibrium. The reason is that, when the attention cost is high, the

only way to maintain impartiality is to acquire noisy information that provides uniformly low

incentives to all workers. Moreover, ranking these equally poorly motivated workers requires

considerable time and energy from the employer, who thus prefers to live in a world in which only

some workers are meticulously screened and properly incentivized, whereas others are rationally

ignored and therefore underinvest. Such an outcome allows the employer to be rationally inattentive

and therefore saves on attention cost, in addition to boosting the expected revenue. To the extent

that employers can affect the selection of equilibrium in their interactions with workers, they may

steer the system towards discrimination. This equilibrium selection feature of our model is absent

from Arrow’s explanation of statistical discrimination based on pure coordination failure.

Finally, we want to stress that rational inattention is essential to our story, because our game

has no discriminatory equilibrium in the absence of costly information acquisition, or when the

attention cost parameter is sufficiently close to zero.

Our model not only presents a novel explanation for statistical discrimination; it also provides a

tractable framework to discuss various policy issues, as well as phenomena associated with labor

market discrimination.

Attention and discrimination. Our model speaks to the connection between attention and dis-

crimination, which has received a lot of attention in the empirical documentation of discriminatory

outcomes. Much research in economics and psychology uses the Implicit Association Test (IAT) to

detect and measure automatic, unconscious, biases, based on the premise that the latter are triggered

by deficits in the decision-maker’s attentional capacity [Greenwald et al., 1998]. For example, Chugh
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[2004] argues that managers operate under time pressure, and that this leads to decisions that are

tainted by automatic, unconscious, biases. Bertrand et al. [2005] interpret the well-known study of

discrimination through African-American names of Bertrand and Mullainathan [2004], as evidence

that time-constrained recruiters may allow implicit biases to guide their decisions.

Our model formally captures the attentional channel through which implicit biases could rise and

fall. It predicts a non-monotonic relation between the attention cost parameter and the equilibrium

degree of discrimination, as illustrated by the above diagram. In Section 3.3, we use this prediction

to study the de-biasing techniques used by real-world organizations to address discrimination.

The discussion therein speaks to the varying effectiveness of these techniques [Eberhardt, 2020,

Greenwald and Lai, 2020], suggesting that such an ambiguity—which has annoyed and puzzled

researchers and practitioners—should be the norm rather than the exception.

Affirmative action. Our model facilitates analysis of affirmative action policies, in particular

the effectiveness of quotas and subsidies in eliminating a discriminatory situation. We show that

mandating a quota that requires members of different groups be promoted with equal probability

gives rise to a model that only has impartial equilibria. In contrast, a subsidy for promoting

minorities will never achieve equity between different groups. The quota may thus seem like the

best policy, except that our results regarding the most profitable equilibrium can call into question

the long-term effects of affirmative action quotas, as well as the desirability of equity from the

perspective of social welfare. Details are in Section 5.

Occupational discrimination. Our model can be used to capture occupational discrimination.

There is clear evidence that men and women work on very different jobs, even within narrowly

defined industries or firms [Blau and Kahn, 2017]; their performance evaluations are based on

stereotypical traits, and overlook their achievements in counter-stereotypical tasks [Bohnet et al.,

2016, Correll et al., 2020]. In Section 6, we extend our model to allow for multidimensional tasks and

skills, and show that a similar mechanism to the one generating discriminatory outcomes in our

main model, can also explain why different categories of workers (who are ex-ante identical) invest

in different skills and are assigned different tasks. The channel is, again, that a rationally inattentive

employer may save on attention cost by selectively paying attention to different workers in the

assignment of different tasks. The employer’s selectivity is then mirrored in workers’ differential

investments in task-specific skills, which, in equilibrium, gives rise to occupational segregation

and stereotypes. Our results, as well as a detailed discussion, can be found in Section 6.

1.1 Related Literature
The current paper adds to four strands of the literature: statistical discrimination, rational inatten-

tion, and fairness (in AI).

Statistical discrimination. The literature on statistical discrimination is too vast to be exhausted

here—we refer the reader to the surveys by Fang and Moro [2011] and Onuchic [2022]. Instead, we

focus on the direct precedents to our work, and discuss the papers most closely related to ours.

The most important precedent to our work is Coate and Loury [1993]. These authors develop

an Arrovian model of statistical discrimination, whereby each worker is assigned to either a

standard task or a challenging task based on the realization of an exogenous, imperfect, signal of

his skill. Discrimination emerges again as the consequence of coordination failure. One can think

of our model of a variant of Coate and Loury’s model, with two major differences: first, the signal

structure is endogenously chosen by the principal à la rational inattention; second, agents compete

in a tournament rather than being assigned to jobs on an individual basis. As will be discussed

shortly, both differences are crucial for our result concerning discrimination as the most profitable
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equilibrium.
1
The model of Coate and Loury has been extended by several authors: for example

by Fang [2001] to endogenous group identities, and by Chaudhuri and Sethi [2008] to allow for

peer effects. The issue of endogenous information structure has, however, not been analyzed until

recently (more on this later).

Our work provides a new foundation for the discriminatory information structure assumed by

Phelpsian models of statistical discrimination. Recently, Chambers and Echenique [2021] examine

Phelpsian statistical discrimination from the angle of information design, but they do not propose a

strategic model of labor market outcomes and instead connect the presence of Phelpsisan statistical

discrimination to the problem of identifying a skill distribution. Escudé et al. [2022] further the

connection to Blackwell’s theorem, and provide a more nuanced relation between discrimination

and informativeness than allowed for in Chambers and Echenique.

Rational inattention. The literature on rational inattention (RI) pioneered by Sims [2003] has

grown rapidly in recent years; see Maćkowiak et al. [2021] for a survey. We use the ideas and

techniques developed in this literature to study statistical discrimination. Conceptually, our results

concerning the discriminatory equilibrium exploit the flexibility associated with RI information

acquisition, which has proven crucial for shaping the outcomes of financial contracting, political

competition, and ultimatum bargaining [Hu et al., ming, Ravid, 2020, Yang, 2020]. Empirical rele-

vance of attentional flexibility has been established by the lab experiments conducted by Ambuehl

[2017] and Dean and Neligh [2019], and by Eberhardt [2020] in the context of discrimination.

Technically, Matějka and McKay [2015] and Yang [2020] provide a complete characterization of the

optimal signal structure for binary RI decision problems; our analysis builds on their results.

Recently, Bartoš et al. [2016] and Fosgerau et al. [ming] propose models of job market outcomes

in which employers choose costly information structures, but the mechanisms they seek to explore

differ from ours.
2
In the model of Bartoš et al. [2016], employers screen job applicants, taking into

account the exogenous difference between groups. Stylized, costly, information acquisition (in the

form of variance reduction of a normal random variable) is shown to magnify this difference, as

employers acquire information about the disadvantageous group when the market is slack, and

ignore them when the market is tight.

Fosgerau et al. [ming] study an Arrovian model where a screener acquires costly information

about job candidates on an individual basis, in a model with a continuum of agents, and allowing a

general posterior-separable attention cost. The focus of their comparative statics results is not on

when the screener can sustain discrimination among ex-ante identical groups as the most profitable

equilibrium, but on how rational inattention interacts with several natural intrinsic differences

between groups: differential screening costs, prejudice, and asymmetric access to social capital.

A key difference with our paper, is that the screener considers each agent individually, while in

our model agents compete for a limited opportunity. Under rational inattention, this becomes a

competition for the principal’s limited attention. Using a discriminatory signal structure to screen

and select, the principal saves on attention cost, and can sometimes sustain discrimination as the

most profitable equilibrium among ex-ante identical agents. The channel uncovered in our paper

has not been explored by the existing literature on rational inattention and statistical discrimination.

1
We are not the first to study Arrovian discrimination with tournament being the incentive scheme. de Haan et al. [2017]

examine, theoretically and experimentally, the stability of equilibria in a variant of Coate and Loury’s model, whereby agents

can undertake continuous investments to improve their chances of winning a tournament, and the principal’s decision is

made based on an exogenous signal structure. The focus here is on how rational inattention could bias the equilibrium

signal structure and effort choices.

2
Recently, Bartoš et al. [2016], Glover et al. [2017], and Huang et al. [2022] provide evidence for attentional discrimination

using field experiments and administrative data.
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The work of Matveenko and Mikhalishchev [2021] studies how imposing quotas on average

decision probabilities affects the solution to the rational inattention problem studied by Matějka

and McKay [2015]. Our analysis on affirmative action quotas builds on their analysis, but enriches

it with the endogenous investments by agents.

Incentive contracting. We join Alchian and Demsetz [1972] in formalizing the role of monitoring

cost in shaping the organization of multi-agent production. Most existing contract theory papers

restrict the principal to drawing signals from exogenously given distributions, with or without an

information acquisition cost. Li and Yang [2020] consider optimal incentive contracting between

a rationally inattentive principal and a single agent, whereby both the incentive scheme and

monitoring structure are part of the principal’s strategic planning. Here, the incentive scheme is

taken as given, and the focus is on the optimal information structure that guides the competition

between multiple agents.

We study a contracting problem with subjective monitoring, whereby the principal’s choice

of the signal structure is his private information. The existing literature on incentive contracting

with subjective performance evaluation focuses on three kinds of contractual frictions: (1) the

non-verifiability of subjective performance evaluation, (2) the unobservability thereof, and (3) the

favoritism practiced by supervisors (see Prendergast, 1999 for a survey). We instead formalize the

role of costly and yet flexible monitoring in engendering biased subjective performance evaluation,

a result that is, to the best of our knowledge, new to the literature.

The theory of contests has been widely applied to the study of affirmative action policies that

level the playing field for heterogeneous participants. Most existing studies attribute the biases of

optimal contests to the asymmetry between contestants or the favoritism practiced by the principal;

see Chowdhury et al. [2020] for a survey. Recently, a few authors start to realize that the optimal

contest between ex-ante identical agents can be biased, provided that the principal’s objective

is sufficiently general [Drugov and Ryvkin, 2017], or there are sufficiently many agents [Fu and

Wu, 2020]. We consider a stylized tournament between two ex-ante identical agents, and use the

rational inattention of the principal to bias the optimal tournament.

Fairness. There is a large and active literature on fairness in machine learning and algorithm

design, whose chief aim is to formulate algorithmic criteria and solutions that will undo the biases

that algorithms may inherit from the sources they are based on [Barocas et al., 2019, Chouldechova

and Roth, 2018]. The effort of the literature is therefore mainly normative—see, for example, the

arguments articulated by Dwork et al. [2012] and Kearns and Roth [2019], which seek to develop the

normative basis for fairness in the design of classification algorithms. When it comes to uncovering

the reasons behind discriminatory outcomes, the literature focuses on the properties of training data

and other issues that are relevant for algorithmic decision-making. Our model is a complementary

effort to understand a novel channel of discrimination that stems from rational yet imperfect human

decision-making.

2 MODEL
We study a game between three players: a principal and two agents, who are called Michael (𝑚) and

Wendy (𝑤 ). The principal employs Michael and Wendy, and has to choose one of them to promote.

The promotion decision serves to induce the agents to exert effort so as to be more productive. It

delivers a unit benefit to the promoted agent, as well as the agent’s productivity to the principal.
3

3
One can broadly interpret the promotion opportunity as a reward (e.g., a bonus payment) that motivates agents to exert

effort. For concreteness’ sake, we shall stick to the interpretation of promotion throughout.
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Specifically, each agent 𝑖 ∈ {𝑚,𝑤} chooses a level of effort 𝜇𝑖 ∈ {𝜇, 𝜇}, with 0 < 𝜇 < 𝜇 < 1, at a

cost𝐶 (𝜇𝑖 ). Suppose that𝐶 (𝜇) = 0 and𝐶 (𝜇) = 𝐶 > 0. The effort 𝜇𝑖 determines a random productivity
𝜃𝑖 ∈ {0, 1} for agent 𝑖 , with 𝜇𝑖 being the probability that 𝜃𝑖 = 1 and 1− 𝜇𝑖 the probability that 𝜃𝑖 = 0.

Given the profile 𝝁 = (𝜇𝑚, 𝜇𝑤), each 𝜃𝑖 is drawn independently.

The principal does not known the values of 𝜃𝑚 and 𝜃𝑤 , but can choose to acquire information

about them. Information, however, is costly. Given the information that the principal gleans about

𝜽 = (𝜃𝑚, 𝜃𝑤), he chooses 𝑎 ∈ {0, 1}, where 𝑎 = 0 means that Wendy is promoted, and 𝑎 = 1 means

that Michael is promoted.

The principal’s information acquisition is modeled as the choice of a signal structure 𝜋 : {0, 1}2 →
Δ(𝑆), which maps each profile of productivity values to a random signal taking values in a set 𝑆 .

We assume that 𝑆 is finite and that |𝑆 | ≥ 2; later we shall demonstrate that these assumptions about

𝑆 are without loss of generality. Otherwise we impose no restriction on the signal structure 𝜋 . A

promotion rule is a function 𝑎 : 𝑆 → Δ({0, 1}), which maps each signal realization to a (random)

decision on whether to promote Michael or Wendy.

Given a profile 𝝁 of effort choices by the agents, the principal’s expected payoff is

E
[
𝑎 ˜𝜃𝑚 + (1 − 𝑎) ˜𝜃𝑤 |𝝁, 𝜋, 𝑎(·)

]
− 𝜆𝐼 (𝜋 |𝝁),

where 𝜆 > 0 parameterizes the cost of information acquisition, and is henceforth referred to as the

attention cost parameter ; and 𝐼 is the mutual information between the random productivity profile

˜𝜽 and the random signal generated by 𝜋 . In words, the principal’s payoff equals the productivity

of the promoted agent, which is estimated according to the information generated by the signal

structure of his choice. As the latter becomes more informative of agents’ productivities, the cost

of information acquisition increases.

The game begins with the principal and agents moving simultaneously: The former specifies

a signal structure 𝜋 and a promotion rule 𝑎(·), whereas the latter make effort choices 𝜇𝑖s. After

that, productivities and signals are realized, and the principal makes a promotion decision. When

choosing, the principal observes neither agent’s effort or productivity, thus facing a moral hazard

problem. Agents do not observe the principal’s choice of the signal structure or promotion rule—an

assumption that reflects the subjective nature of employee evaluation and promotion in practice.

Our solution concept is pure strategy Bayes Nash equilibrium (hereinafter, equilibrium for short).

When multiple equilibria coexist, we characterize them all, with a particular focus on the most
profitable equilibrium to the principal.

3 RESULTS
3.1 Preliminaries
First, it is helpful to simplify the principal’s strategy. Define Δ𝜃 = 𝜃𝑚 − 𝜃𝑤 as the differential

productivity between𝑚 and𝑤 , and note that Δ𝜃 ∈ {−1, 0, 1}. For any given effort profile 𝝁, rewrite
the principal’s expected payoff as

E
[
𝑎Δ ˜𝜃 | 𝝁, 𝜋, 𝑎(·)

]
+ 𝜇𝑤︸                          ︷︷                          ︸

Expected revenue

−𝜆𝐼 (𝜋 | 𝝁),

and note that the expected revenue depends on his strategy (𝜋, 𝑎(·)) and 𝝁 jointly only through

Δ𝜃 . By Matějka and McKay [2015], we may restrict attention to signal structures that prescribe a

(random) promotion recommendation to the principal based on the differential productivity between

𝑚 and𝑤 , i.e., 𝜋 : {−1, 0, 1} → Δ({0, 1}). Intuitively, any information beyond the aforementioned

is redundant and therefore shouldn’t be acquired. Moreover, promotion recommendations must
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be strictly obeyed by the principal, i.e., 𝑎(1) = 1 and 𝑎(0) = 0, because otherwise the principal has

a (weakly) preferred candidate regardless of the promotion recommendations, and can therefore

always promote that agent without acquiring information. Hereinafter, we shall represent the

principal’s strategy by 𝜋 : {−1, 0, 1} → [0, 1], where each 𝜋 (Δ𝜃 ), Δ𝜃 ∈ {−1, 0, 1}, specifies the
probability that𝑚 is recommended for promotion when the differential productivity between𝑚

and𝑤 equals Δ𝜃 .
Next are the key concepts that embody the notion of discrimination.

Definition 3.1. A signal structure 𝜋 is impartial if the probability of promoting an agent depends

only on his or her productivity difference with the other agent, and not on agents’ identities. That

is, 𝜋 (Δ𝜃 ) = 1 − 𝜋 (−Δ𝜃 ) ∀Δ𝜃 ∈ {−1, 0, 1}. Otherwise 𝜋 is discriminatory.

Definition 3.2. An equilibrium is impartial (resp. discriminatory) if the equilibrium signal structure

is impartial (resp. discriminatory).

As will later be demonstrated, an impartial equilibrium must induce the same level of effort

from both agents, whereas a discriminatory equilibrium must induce different levels of effort from

the two agents. By symmetry, it is without loss of generality (w.l.o.g.) to focus on discriminatory

equilibria that induce high effort from𝑚 and low effort from𝑤—a convention we will follow in the

remainder of the paper.

Lastly we introduce a regularity condition that will be maintained throughout the paper. For

ease of notation, we write Δ𝜇 for 𝜇 − 𝜇, 𝑐 for 𝐶/Δ𝜇, 𝐴 for 𝜇 (1 − 𝜇), and 𝐵 for 𝜇 (1 − 𝜇):

Assumption 3.1. 𝜇 + 𝜇 > 1 and 𝑐 < 𝜇 (1 − 𝜇)/(𝐴 + 𝐵).

The role of Assumption 3.1 will be discussed in Appendix A.

3.2 Main Results
We present our two most important results. The first concerns the existence and uniqueness of

impartial and discriminatory equilibria. The second pinpoints the most profitable equilibrium to

the principal.

Theorem 3.3. Fix any 𝐶 , 𝜇, and 𝜇 that satisfy Assumption 3.1. These determine values 𝜆, 𝜆, and 𝜆∗

of the attention cost parameter for which 0 < 𝜆 < 𝜆 < +∞ and 𝜆∗ > 0. The following statements are
true:
(1) An impartial equilibrium always exists, and it is unique if and only if 𝜆 ≠ 𝜆∗. When unique, the

impartial equilibrium sustains the high-effort profile (𝜇, 𝜇) if the attention cost parameter is
low, namely 𝜆 < 𝜆∗; and it sustains the low-effort profile (𝜇, 𝜇) if the attention cost parameter is
high, i.e., 𝜆 > 𝜆∗.

(2) A discriminatory equilibrium exists if and only if the attention cost parameter is intermediate,
i.e., 𝜆 ∈ [𝜆, 𝜆]. Whenever a discriminatory equilibrium exists, it is unique.

(3) 𝜆 < 𝜆∗ always holds. 𝜆∗ < 𝜆 holds if and only if 𝜇 > 1/2 and Condition (4) in Appendix B holds.

Theorem 3.4. Let everything be as in Theorem 3.3, and suppose that 𝜆∗ < 𝜆. Then the most profitable
equilibrium to the principal is discriminatory if and only if 𝜆 ∈ (𝜆∗, 𝜆].

To better understand the intuitions behind these results, we first restrict the principal to using

impartial signal structures. Under this restriction, the signal acquired by the principal becomes less

informative about agents’ productivities (in the sense of Blackwell) as the attention cost parameter

increases. Agents best respond by exerting high effort when the attention cost parameter is low,
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and low effort when the attention cost parameter is high. The symmetry in agents’ effort choices, in

turn, justifies the use of an impartial signal structure to begin with. The two regimes are separated

by the threshold value 𝜆∗ > 0, at which the game has two impartial equilibria. For all 𝜆 ≠ 𝜆∗, the
impartial equilibrium is unique.

We next allow the principal to use discriminatory signal structures. When the attention cost

parameter is intermediate, i.e., 𝜆 ∈ [𝜆, 𝜆], the principal can sustain a discriminatory effort profile

through conducting discriminatory performance evaluations.

As an illustration, consider the numerical example in Table 1, which takes a discriminatory effort

profile as given and solves for the optimal signal structure, i.e., one that maximizes the principal’s

expected profit:

Table 1. Optimal signal structure for 𝝁 = (𝜇, 𝜇) = (.8, .6), 𝜆 = .3.

Δ𝜃 1 0 -1

P(Δ𝜃 | 𝝁) .32 .56 .12

𝜋 (Δ𝜃 ) .98 .74 .09

Since𝑚 is known to work harder than𝑤 , promoting𝑚 over𝑤 is the safer choice for the principal.

In consequence, a rationally inattentive principal will favor𝑚, unless𝑤 is strictly more productive.

As depicted in Table 1, doing so does not require a careful distinction between whether𝑚 is more

productive than, or equally productive as𝑤 (indeed 𝜋 (1) = .98 is not very different from 𝜋 (0) = .74),

and therefore saves on information acquisition cost. At the same time, the signal structure still

does a decent job in selecting the most productive agent, as it generates an expected revenue of

.90, compared to the expected revenue .92 in the benchmark case where information acquisition is

costless. While𝑤 is strongly favored by the principal when she is strictly more productive than𝑚

(i.e., 𝜋 (−1) = .09), that event occurs with a small probability because𝑚 works harder than𝑤 .𝑤 is

treated unfavorably otherwise. In particular, and importantly, this occurs when she is as productive

as𝑚 (i.e., 𝜋 (0) = .74).

Turning to the agents’ incentives to exert effort, under the above numerical assumptions,𝑤 can

increase her winning probability by

Δ𝜇 [𝜇 (𝜋 (1) − 𝜋 (0)) + (1 − 𝜇) (𝜋 (0) − 𝜋 (−1))] = .081

if she exerts high effort rather than low effort. The analogous increase for𝑚 is

Δ𝜇 [(1 − 𝜇) (𝜋 (1) − 𝜋 (0)) + 𝜇 (𝜋 (0) − 𝜋 (−1))] = .098.

If 𝐶 ∈ (.081, .098), then it is indeed optimal for𝑚 to exert high effort and𝑤 low effort. In turn, this

justifies the principal’s use of the discriminatory signal structure that favors𝑚.

Taken together, our main results present an important lesson: Discrimination in labor market

outcomes could stem from the discrimination in information acquisition. Conducting discrimi-

natory performance evaluations allows the principal to be rationally inattentive and to sustain a

discriminatory effort profile in equilibrium. Compared to the impartial equilibrium that sustains

the low effort profile, the discriminatory equilibrium enjoys both a revenue advantage and a cost
advantage. That is, it generates higher expected revenue to the principal and incurs a lower attention
cost, thus constituting the most profitable equilibrium to the principal when both kinds of equilibria

coexist (i.e., when 𝜆 ∈ (𝜆∗, 𝜆]). The comparison between the discriminatory equilibrium and the

impartial equilibrium that sustains the high effort profile is more delicate, because the former has,

roughly speaking, a revenue disadvantage and a cost advantage over the latter. As it turns out, the
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cost-saving concern is always of a secondary importance. Hence the discriminatory equilibrium is

the least profitable to the principal when these kinds of equilibria coexist (i.e., when 𝜆 ∈ [𝜆, 𝜆∗]).

3.3 Implications
Our results have direct implications for the literatures on implicit bias and discrimination in

subjective performance evaluation. We proceed to discuss these connections in detail, as well as

the welfare consequences of our results.

Implicit bias, stereotype, and the effectiveness of de-biasing programs. Perhaps the most obvious

implication of our results is the connection between attention and discrimination. Many scholars,

across multiple disciplines, have advanced the notion that limited attention triggers implicit bi-

ases and stereotypes. The idea is that in attempting to make sense of other people, we regularly

construct and use categorical representations to simplify our process of perception. This mode

of thought, formally known as social categorization, offers tangible cognitive benefits such as

rapid inferences, and the efficient deployment of limited processing resources.
4
A popular idea

among social psychologists is that the activation of social categories is modulated by the availability

of attentional resources [Greenwald and Banaji, 1995, Macrae and Bodenhausen, 2000]. Deficits

in the attentional capacity increase the likelihood that decision-makers will apply stereotypes

when dealing with others—an idea that lays the foundation for the Implicit Association Test (IAT),

developed by Greenwald et al. [1998] to detect and measure automatic, unconscious, biases.

Evidence on the connection between attention and discrimination abounds. In human resource

management, Chugh [2004] argues that managers operate under time pressure, and that this leads to

decisions that are tainted by automatic, unconscious, biases. Bertrand et al. [2005] interpret the well-

known study of discrimination through African-American names of Bertrand and Mullainathan

[2004], as evidence that time-constrained recruitersmay allow implicit biases to guide their decisions.

Similar arguments have been used to explain the discriminatory practices observed in other contexts,

such as criminal justice, education, healthcare, and sport [Chapman et al., 2013, Eberhardt, 2020,

Price and Wolfers, 2010, Warikoo et al., 2016]. Yet despite the richness of evidence, a theory that

establishes the causal link between limited attention and implicit bias is lacking. Our results fill

this intellectual gap by establishing a formal, explicit, mechanism through which costly and yet

flexible attention allocation gives rise to discrimination.

Our model predicts a nonmonotonic relation between the attention cost parameter and the

equilibrium degree of discrimination. Recall the statement of Theorem 3.3, or the diagram in the

introduction. The non-monotone nature of the comparative-statics speaks to the varying effec-

tiveness of the de-biasing techniques used by real-world organizations to address discrimination.

On the positive side, the Oakland Policy Department recently adjusted its foot pursuit policy so

that officers could no longer follow suspects as they run into backyards or blind alleys. Instead,

officers were instructed to “step back, slow down, call for backup, and think it through.” According

to Eberhardt [2020], this simple adjustment, together with use of body cameras to monitor the

languages used by police officers, has not only has led to fewer civilians being shot but also has

made cops safer: Injuries among officers dropped by 70 percent, and the number of officer-involved

shootings fell dramatically, from an average of eight every year to about the same number in

4
Fryer and Jackson [2008] propose a model of social categorization, based on the idea that the same rule of simplification

must be applied across multiple social contexts (e.g., how one should interact with people with different races during and

after work is governed by the same rule). In contrast, rationally inattentive information aggregation is context-dependent.
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the past five years, even while the arrest rate held steady and crime levels have fallen.
5
On the

negative side, Greenwald and Lai [2020] recently concluded, based on their meta analysis of the

implicit bias training programs offered in corporations, nonprofit organizations, hospitals, pub-

lic welfare organizations, schools, universities, court systems, and police departments, that “The

popular media often suggests relying on one’s own resources to intercept implicit biases—perhaps

by pausing to think deliberately or by meditating before making decisions that might adversely

affect others. Convincing evidence for the effectiveness of these strategies is not yet available in

peer-reviewed publications.” Our results put these seemingly conflicting findings into perspective,

and suggest that they may share the same root. Rather than to abandoning the premise that limited

attention triggers implicit biases (as suggested by Greenwald and Lai, 2020), an alternative way to

reconcile the aforementioned findings is to recognize that the exact relation between attention and

discrimination is more nuanced than previously thought.

Gender and racial gap in subjective performance evaluation. Gender and racial stereotypes continue
to disadvantage women and minorities through biased performance appraisals. This unfortunate

reality does not surprise many managers: In one recent survey conducted by Mackenzie et al.

[2019], only 15% of women and 24% of men managers had confidence in the performance evaluation

process, while most viewed it as subjective and highly ambiguous. Our model formalizes a causal

link between limited managerial attention and biased subjective performance evaluation. To the

extent that subjective performance evaluation affects labor market outcomes, such as termination,

bonus pay, and career trajectories [Baker et al., 1988, Prendergast, 1999], our model sheds light on

the on the role of limited managerial attention in shaping the various labor market outcomes.

Years of sociological research into the gender and racial gap in subjective performance evaluations

has established several salient patterns. For example, women tend to get shorter, more vague, and

less constructive critical feedback during performance reviews, which inhibits their ability to learn

what they need to do to grow and advance [Correll and Simard, 2016, Jampol and Zayas, 2021]. They

are also held to higher performance standards, and face increased scrutiny and shifting criteria

when being evaluated [Wynn and Correll, 2018]. In a related study, Upton and Arrington [2012]

find a negative relation between balanced scorecard performance evaluations and evaluators’ racial

biases measured by IAT.

Our model speaks to these stylized facts. It predicts that minorities are rated more harshly than

majorities in the discriminatory equilibrium. Indeed, in our model, minority workers are recognized

by the employer only when they truly are strictly more productive than their majority counterparts.

Otherwise their chances of getting a promotion is slim, which is the case even if they are equally

productive as their majority counterparts. Such a hurdle discourages minorities from undertaking

costly investments. In equilibrium, minorities are promoted less frequently and earn less on average

than majorities.

Welfare. An important implication of our results—which sets them apart from the standard

Arrovian mechanism such as Coate and Loury [1993]—is that one cannot Pareto rank the various

kinds of equilibria generated by the model. While coordination failure is clearly part of our story,

the welfare implications of our results are more subtle. This is illustrated by Figure 1, which plots

the varying welfare regimes against the attention cost parameter.

From the principal’s perspective, he most prefers the impartial equilibrium that sustains the high

effort profile, followed by the discriminatory equilibrium, and then the impartial equilibrium that

5
Relatedly, Nextdoor Neighbor, a social network (developed by Meta, formerly Facebook) for residential neighbors to

communicate through, recently started asking its users to provide detailed descriptions about the suspicious activities they

wish to report to the system, because “adding frictions allows users to act based on information rather than instinct.”
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𝜆𝜆 𝜆∗

Principal prefers

the impartial eqm;

agents jointly pre-

fer the discrimina-

tory eqm

Principal prefers

the discriminatory

eqm; agents jointly

prefer the impar-

tial eqm

Fig. 1. Welfare regimes.

sustains the low effort profile. Meanwhile, agents together most prefer the impartial equilibrium

that sustains the low effort profile, followed by the discriminatory equilibrium, and finally the

impartial equilibrium that sustains the high effort profile (as the sum of their expected utilities in

these equilibria are 1, 1−𝐶 , and 1− 2𝐶 , respectively). Thus depending on the welfare weights of the

principal and agents, reduced discrimination may either enhance or undermine utilitarian social

welfare. This finding further complicates the picture painted by our results, suggesting that the

aforementioned de-biasing programs might not only send the equilibrium degree of discrimination

in the wrong direction, but might also have unintended welfare consequences.

4 ANALYSIS
This section provides a detailed analysis of Theorem 3.3. The proof of Theorem 3.4 is more technical

and is relegated to Appendix B.

For ease of notation, we shall hereinafter write 𝜋 for the average probability that an arbitrary

signal structure 𝜋 recommends𝑚 for promotion, as well as𝑋 for 𝜋 (1)−𝜋 (0) and𝑌 for 𝜋 (0)−𝜋 (−1).
Then 𝜋 is impartial if and only if 𝜋 (0) = 1/2 and 𝑋 = 𝑌 . We will also write 𝛾 for exp(1/𝜆) and note

that 𝛾 is strictly decreasing in 𝜆, 𝛾 → +∞ as 𝜆 → 0, and 𝛾 → 1 as 𝜆 → +∞.

4.1 Best Response Functions
Consider first the problem faced by the principal, holding agents’ effort profile 𝝁 fixed. Call the

solution to this problem the optimal signal structure for 𝝁. By Matějka and McKay [2015], this

signal structure is either degenerate, satisfying 𝜋 (Δ𝜃 ) ≡ 0 or 1, or it is nondegenerate and satisfies

𝜋 (Δ𝜃 ) ∈ (0, 1) ∀Δ𝜃 . The next lemma solves for the optimal signal structure for every effort profile.

Lemma 4.1. (1) The optimal signal structure for (𝜇, 𝜇) or (𝜇, 𝜇) is nondegenerate and impartial.
It satisfies 𝜋 = 𝜋 (0) = 1/2 and 𝑋 = 𝑌 = 𝑔(𝛾), where

𝑔(𝛾) = 𝛾 − 1

2(𝛾 + 1) satisfies 𝑔 > 0 and
𝑑𝑔(𝛾)
𝑑𝜆

< 0 ∀𝜆 > 0.

(2) The optimal signal structure for (𝜇, 𝜇) is degenerate if 𝜆 ≥ ˘𝜆 = (ln(𝐴/𝐵))−1 > 0, and it is
nondegenerate otherwise. In the second case, the signal structure is discriminatory and satisfies
𝜋 = 𝜋 (0) = (𝛾𝐴 − 𝐵) [(𝛾 − 1) (𝐴 + 𝐵)]−1 ∈ (1/2, 1) and 𝑋 = 𝑓 (𝛾) < 𝑌 = 𝐴𝑓 (𝛾)/𝐵, where

𝑓 (𝛾) = (𝛾𝐴 − 𝐵) (𝛾𝐵 −𝐴)
(𝛾2 − 1) (𝐴 + 𝐵)𝐴 satisfies 𝑓 > 0 and

𝑑 𝑓 (𝛾)
𝑑𝜆

< 0 ∀𝜆 ∈ (0, ˘𝜆).

Lemma 4.1 conveys three important messages. First, in the case where an optimal signal structure

is nondegenerate, the conditional probability that it recommends 𝑚 for promotion is strictly

increasing in the differential productivity between𝑚 and𝑤 , i.e., 𝑋,𝑌 > 0. When both agents attain

the same level of productivity, the conditional probability that𝑚 is recommended for promotion

equals the average probability, i.e., 𝜋 (0) = 𝜋 . In light of these findings, we shall hereinafter interpret
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𝑋 as the extent to which outperforming𝑤 increases𝑚’s promotion probability above the average,

and 𝑌 as the extent to which underperforming 𝑤 reduces𝑚’s promotion probability below the

average.

Second, the optimal signal structure is impartial when both agents exert the same level of effort,

and it is discriminatory otherwise. The first result is easy to understand. To gain insights into the

second result, notice that when𝑚 is more hard-working than𝑤 , promoting𝑚 is a safe option. The

optimal signal structure favors𝑚 unless𝑤 is strictly more productive, as doing so doesn’t require a

careful distinction between whether𝑚 is strictly more productive than, or equally productive as

𝑤 (i.e., 𝑋 is small), and therefore saves on information acquisition cost. At the same time, it still

does a decent job in selecting the most productive agent, since𝑚 works harder than 𝑤 after all.

While𝑤 is strongly favored by the principal when she is strictly more productive than𝑚 (i.e., 𝑌 is

large), that event occurs with a small probability because𝑚 works hard.𝑤 is treated unfavorably

otherwise and, in particular, when she is equally productive as𝑚 (i.e., 𝜋 (0), 𝜋 (1) > 1/2). Since

𝜋 (0) = 𝜋 ,𝑤 is also treated less favorably on average.

Finally, as the attention cost parameter 𝜆 increases, any optimal signal structure becomes “noisier,”

in that the conditional probabilities that it recommends the most productive agent for promotion

become more concentrated around the average probability, i.e., 𝑋 and 𝑌 are both decreasing in 𝜆.

We next turn to agents’ best response functions. The next lemma solves for an agent’s best

response to a given signal structure and the other agent’s effort choice.

Lemma 4.2. Fix any signal structure 𝜋 . For any 𝜇𝑤 ∈ {𝜇, 𝜇},𝑚 prefers to exert high effort rather
than to exert low effort if and only if

(1 − 𝜇𝑤)𝑋 + 𝜇𝑤𝑌 ≥ 𝑐. (IC𝑚)

For any 𝜇𝑚 ∈ {𝜇, 𝜇},𝑤 prefers to exert high effort rather than to exert low effort if and only if

𝜇𝑚𝑋 + (1 − 𝜇𝑚)𝑌 ≥ 𝑐. (IC𝑤)

From𝑚’s perspective, 𝑋 is a carrot that is effective when𝑤 has a low productivity (hence𝑚 can

outperform 𝑤 and raise his chance of getting promoted), whereas −𝑌 is a stick that is effective

when𝑤 has a high productivity. The overall incentive power that a signal structure provides to

him is thus (1 − 𝜇𝑤)𝑋 + 𝜇𝑚𝑌 . By exerting high effort rather than low effort,𝑚 can increase his

chance of getting promoted by Δ𝜇 [(1 − 𝜇𝑤)𝑋 + 𝜇𝑚𝑌 ]. In the case where (1 − 𝜇𝑤)𝑋 + 𝜇𝑚𝑌 exceeds

the effective cost 𝑐 = 𝐶/Δ𝜇 of exerting high effort, exerting high effort is optimal for𝑚.

The problem faced by 𝑤 can be solved analogously. In case 𝜋 is an optimal signal structure,

Lemma 4.1 implies that sustaining high effort becomes harder as 𝜆 increases.

4.2 Equilibria
The analysis differs, depending on whether the equilibrium is impartial or discriminatory.

Consider first the impartial case, in which the optimal signal structure satisfies 𝑋 = 𝑌 = 𝑔(𝛾). It
induces both agents to exert high effort if 𝑔(𝛾) ≥ 𝑐 , and low effort if 𝑔(𝛾) ≤ 𝑐 . The two regimes are

separate by a single threshold:

𝜆∗ = (ln𝑔−1 (𝑐))−1,

at which the game has two impartial equilibria. For all 𝜆 ≠ 𝜆∗, the impartial equilibrium is unique.

The discriminatory case is illustrated by Figure 2. On the one hand, (𝑋,𝑌 ) must lie in the grey

area in order to satisfy both agents’ incentive compatibility constraints. On the other hand, it must

lie on the red ray 𝑌 = 𝐴𝑋/𝐵 in order for the signal structure to be optimal. Since 𝜇 + 𝜇 > 1, the grey

area must lie above the 45-degree line. Then from 𝐴 > 𝐵, it follows that the red ray must cross the
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𝑋

𝑌

𝐼𝐶𝑚 ∧ 𝐼𝐶𝑤

𝜇𝑋 + (1 − 𝜇)𝑌 = 𝑐

(1 − 𝜇)𝑋 + 𝜇𝑌 = 𝑐

𝑌 = 𝐴𝑋/𝐵

𝑋𝑋

45
◦

Fig. 2. Analysis of the discriminatory case.

grey area twice, at (𝑋,𝐴𝑋/𝐵) and (𝑋,𝐴𝑋/𝐵), respectively. Thus for any 𝑋 = 𝑓 (𝛾) ∈ [𝑋,𝑋 ], the
profile (𝑋,𝐴𝑋/𝐵) can arise in an equilibrium. The last condition is equivalent to 𝜆 ∈ [𝜆, 𝜆], where

𝜆 = (ln 𝑓 −1 (𝑋 ))−1
and 𝜆 = (ln 𝑓 −1 (𝑋 ))−1.

It remains to sign and rank 𝜆, 𝜆∗, and 𝜆. This step is technical and is relegated to Appendix B.

The regularities of these thresholds are ensured by Assumption 3.1, whose role is discussed in

Appendix A.

5 AFFIRMATIVE ACTION POLICIES
This section uses the model to evaluate two affirmative-action policies that have been used to deal

with discrimination in practice: quotas and subsidies.

5.1 Quotas
Suppose that the principal faces a hard quota mandating that the two agents must be promoted

with equal probability on average:

𝜋 = 1/2. (Q)

The next theorem pinpoints the channel through which the promotion quota operates in our model.

Theorem 5.1. Under the assumption that 𝜇 + 𝜇 > 1, a strategy profile constitutes an equilibrium of
the game with (Q) if and only if it is an impartial equilibrium of the baseline model.

Time has not quelled controversy over affirmative action policies since their introductions in

the 1960s and 1970s. Recent studies seek to understand the channels through which these policies

operate, as well as the duration of their effects (see Holzer and Neumark, 2000, Fang and Moro,

2011, and Doleac, 2021 for surveys). Among others, Miller [2017] argues that affirmative action

policies operate through inducing firms to undertake long-term investments in their employee

screening procedures. This finding is reinforced by Dianat et al. [2022], who find, in the absence of

the screening channel, that affirmative action can have only temporary effects.

Theorem 5.1 adds to this debate. It shows that in the current context, the promotion quota

operates only through eliminating the discriminatory equilibrium. No additional effect should be

expected, since the policy intervention does not impact on any impartial equilibrium, or generate
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any new equilibria as a byproduct. While the first two findings are somewhat anticipated, the last

one is more subtle and sets our analysis apart from alternative models of Arrovian discrimination.
6

As for the duration of quota’s effect, our model offers a bleak possibility: In the case where the

discriminatory equilibrium is the most profitable to the principal, lifting the quota will probably

reverse its effect, as the principal’s ultimate goal is best achieved by the discriminatory equilibrium.

Such a reversal may not be welfare detrimental though, since we cannot Pareto rank the discrimi-

natory equilibrium against the impartial equilibria in general. In the case where the discriminatory

equilibrium attains the greatest level of social welfare, affirmative action may achieve its goal, but

at a cost.

The remainder of this section provides a more detailed analysis of Theorem 5.1. Our starting

observation is that any impartial equilibrium of the baseline model satisfies (Q) and therefore

remains an equilibrium with and without the quota. It remains to show that the discriminatory

effort profile (𝜇, 𝜇) cannot be sustained in any equilibrium in the presence of the quota. To prove

this claim, we first characterize the optimal signal structure for (𝜇, 𝜇) that satisfies (Q) in the next

lemma.

Lemma 5.2. The optimal signal structure for (𝜇, 𝜇) subject to (Q) is unique and satisfies 𝜋 (0) < 1/2

and 𝑋 > 𝑌 > 0.

Comparing and contrasting Lemmas 4.1 and 5.2 reveals how the introduction of the quota

reverses the situations face by𝑚 and𝑤 . Without the quota,𝑚 is favored by the principal unless𝑤

is strictly more productive. In the presence of the quota, it is 𝑤 who is favored by the principal

(i.e., 𝜋 (0) < 1/2 and 𝑌 > 0), unless𝑚 is strictly more productive (i.e., 𝑋 > 0). While𝑚 is strongly

favored by the principal in the last event (i.e., 𝑋 is large), he is discriminated against otherwise,

and, in particular, when he is equally productive as𝑤 . In this way, the principal can meet the quota

constraint, despite that𝑚 works harder than𝑤 .

We next argue that the optimal signal structure satisfying (Q) must violate some agent’s incentive

compatibility constraint. This can be seen from Figure 3, which depicts the signal structures that

satisfy both agents’ incentive compatibility constraints in the grey area:

𝑌

𝑋
45

◦

𝐼𝐶𝑚 ∧ 𝐼𝐶𝑤

𝐼𝐶𝑚𝐼𝐶𝑤

𝜇𝑚𝑋 + (1 − 𝜇𝑚)𝑌 = 𝑐

(1 − 𝜇𝑤 )𝑋 + 𝜇𝑤𝑌 = 𝑐

Fig. 3. When 𝜇𝑚 + 𝜇𝑤 > 1, a signal structure with 𝑋 > 𝑌 > 0 cannot be incentive compatible for both agents.

Under the assumption that 𝜇 + 𝜇 > 1, the grey area lies above the 45-degree line. Therefore, it

mustn’t contain the optimal signal structure satisfying (Q), which lies below the 45-degree line by

6
For example, Coate and Loury [1993] predict that affirmative action quotas could operate through generating new,

“patronizing,” equilibria, whereby the minority group works even less harder than before.
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Lemma 5.2. In that area, satisfying one agent’s incentive compatibility constraint would necessarily

violate the incentive compatibility constraint of the other agent.

5.2 Subsidies
Now suppose that the principal receives a subsidy 𝑠 ≥ 0 for promoting 𝑤 (the case 𝑠 < 0 can be

solved analogously). Subsidy is an important kind of affirmative action policies. In practice, it may

take an explicit form such as employment subsidy, or an implicit form such as promises of more

resources, supports, or future hires.

The case 𝑠 = 0 coincides with the baseline model. For any positive level of subsidy 𝑠 > 0, we ask

whether its very use helps achieve equity, in the following sense.

Definition 5.3. An equilibrium is equitable if agents exert the same level of effort and get promoted

with equal probability on average.

What distinguishes equity from impartiality is that, while the former only requires that agents

be promoted with equal probability on average, the latter mandates that the promotion decision

must be independent of agents’ identities under all circumstances. An impartial equilibrium must

be equitable, but the converse is in general false.

The next theorem provides a negative answer to the aforementioned question, showing that it is

difficult, if not impossible, to achieve equity through the use of subsidies.

Theorem 5.4. Under the assumption that 𝜇+𝜇 > 1, there exists no 𝑠 > 0 such that the corresponding
game sustains (𝜇, 𝜇) in an equilibrium. If, in addition, 𝜇 > 1/2, then there exists no 𝑠 > 0 such that
the corresponding game has an equitable equilibrium.

Thus when choosing which level of subsidy to provide to the principal, we face the following

dilemma: On the one hand, if we do not subsidize the principal for hiring𝑤 , then we cannot rule

out the discriminatory equilibrium, especially when it is most preferred by the principal. But once

we start to subsidize the principal for hiring𝑤 , we will lose equity, sometimes completely. Such an

dilemma sets subsidy apart from quota, as the latter always achieves equity by Theorem 5.1.

A sizable economic literature dating back to Weitzman [1974] examines the differences between

price versus quantities regulations. In our model, quota and subsidy operate through related, but

distinct, channels. On the one hand, they both change the principal’s expected payoff to:

E
[
𝑎(Δ ˜𝜃 − 𝜈) | 𝝁, 𝜋, 𝑎(·)

]
+ 𝜇𝑤 − 𝜆𝐼 (𝜋 | 𝝁) + other terms, for some 𝜈 ≥ 0.

On the other hand, 𝜈 differs, depending on which policy is being used. In the case of quota, 𝜈 ≥ 0 is

the Lagrange multiplier associated with the constraint (Q); it equals zero if (Q) holds automatically

in the baseline model, and it is strictly positive otherwise. Such a flexibility explains why quota

could eliminate the discriminatory equilibrium without impacting on any impartial equilibrium.

In the case of subsidy, however, 𝜈 = 𝑠 ≥ 0, and it is set exogenously and rigidly by the authority.

The next lemma establishes the counterpart of Lemma 5.2 for any positive level of subsidy.

Lemma 5.5. Fix any effort profile 𝝁 and any positive level 𝑠 > 0 of subsidy. If the optimal signal
structure for 𝝁, given the subsidy, satisfies (Q), then it must also satisfy 𝜋 (0) < 1/2 and 𝑋 > 𝑌 .

Combining Lemma 5.5 with the argument articulated in the previous section shows why equity

cannot be achieved by a positive level of subsidy when 𝜇 > 1/2. In that case, satisfying both agents’

incentive compatibility constraints at either (𝜇, 𝜇) or (𝜇, 𝜇) requires that we stay in the grey area

depicted in Figure 3. Since the grey area lies above the 45 degree line, it mustn’t contain the optimal

signal structure that promotes agents with equal probability, which is shown to lie below the 45
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degree line by Lemma 5.5. As a result, equity can be achieved through the use of quota but not any

subsidy.

6 MULTIPLE TASKS AND AND OCCUPATIONAL DISCRIMINATION
This section examines a variant of the baseline model featuring multiple tasks that require distinct

skills to fulfill. Agents may undertake multidimensional investments that affect their productivity

in each task, and they are screened and selected by the principal to perform the various tasks. Our

main finding is that rational inattention may give rise to occupational segregation and stereotypes,

whereby the principal favors different agents in the screening and assignment of different tasks,

and agents invest in the skills that they are treated favorably for. This occurs in spite of agents

having a priori symmetrical aptitudes towards the differing tasks, and can indeed constitute the

most profitable equilibrium to the principal.

Setup. There are two tasks that need to be performed: 𝑡 = 1, 2, each arriving randomly with

probability 𝛼𝑡 ∈ (0, 1/2]. The two tasks never arrive simultaneously, hence it is always the case

that exactly one of the tasks needs to be performed.

Agents can undertake multidimensional, costly, investments to improve their task-specific skills.

Agent 𝑖’s investment in skill 𝑡 is 𝜇𝑡𝑖 ∈ {𝜇, 𝜇}. Investment yields a high skill, 𝜃 𝑡𝑖 = 1, with probability

𝜇𝑡𝑖 , and a low skill, 𝜃 𝑡𝑖 = 0, with the complementary probability 1− 𝜇𝑡𝑖 . Investing incurs a cost𝐶
𝑡 (𝜇𝑡𝑖 )

to the agent, where 𝐶𝑡 (𝜇) = 0 and 𝐶𝑡 (𝜇) = 𝐶𝑡 > 0. If agent 𝑖 is chosen to perform task 𝑡 , then he

earns a reward 𝛽𝑡 > 0. He delivers a benefit 𝜃 𝑡𝑖 to the principal, who values the skill of the agent

that is assigned to perform the task.

The principal does not directly observe 𝜃 𝑡𝑖 s, but can acquire costly information about them.

The signal that he uses to screen agents for task 𝑡 is 𝜋𝑡
: {−1, 0, 1} → [0, 1]. For each level of

the differential productivity Δ𝜃 𝑡 = 𝜃 𝑡𝑚 − 𝜃 𝑡𝑤 between𝑚 and𝑤 , the signal specifies the probability

𝜋𝑡 (Δ𝜃 𝑡 ) that𝑚 is assigned to perform task 𝑡 .

The game begins with all players moving simultaneously: The principal specifies the signal

structures 𝜋𝑡
, 𝑡 = 1, 2; agents decide whether to invest in each skill. After players have made their

choices, the task that needs to be performed arrives, and agents are screened according to the

pre-specified signal structure. If 𝑡 is the relevant task, then 𝜋𝑡 (Δ𝜃 𝑡 ) is the probability that𝑚 is

assigned to perform the task. We examine the pure strategy Bayes Nash equilibria of this game.

Preliminaries. First, it is useful to develop some notational conventions. For each 𝑡 ∈ {1, 2}, define
𝑐𝑡 = 𝐶𝑡/(𝛼𝑡𝛽𝑡Δ𝜇), and assume w.l.o.g. that 𝑐1 ≤ 𝑐2

. Intuitively, 𝑐𝑡 captures the effective cost that

agents must incur in order to win the assignment of task 𝑡 . 𝑐1 ≤ 𝑐2
implies that skill 1 is more

valuable than skill 2.

In the baseline model, we defined three cutpoints in the attention cost parameter: 𝜆∗, 𝜆, and 𝜆.
As we increase 𝑐—the effective cost of exerting high effort—these cutpoints must decrease, because

more information (and, hence, a reduced information acquisition cost) is needed to motivate agents

to work hard. In what follows, we shall write the cutpoints as 𝜆∗ (𝑐), 𝜆(𝑐), and 𝜆(𝑐) in order to

signify their dependence on 𝑐 . The assumption 𝑐1 ≤ 𝑐2
then implies that the cutpoints are higher

for task 1 than for task 2.

Next is our notation of specialization.
7

7
To keep the exposition simple, we omit, from the main text, hybrid equilibria in which agents adopt the same investment

strategy for one task but different investment strategies for the other task. However, nothing prevents us from conceptualizing

these equilibria and comparing them with specialized and non-specialized equilibria. The proof presented in the appendix

covers all equilibria.
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Definition 6.1. Call an equilibrium non-specialized if both agents adopt the same investment

strategy. Call an equilibrium specialized if one agent invests in skill 1 and the other agent invests in

skill 2.

One may think of a non-specialized equilibrium as the multidimensional analog of an impartial

equilibrium. In a non-specialized equilibrium, agents invest in the same skill and are screened

indiscriminately by the principal. In a specialized equilibrium, however, agents invest in different

skills and are screened differently. In the case where𝑚 invests in skill 1 and𝑤 in skill 2 (which will

be our focus), the principal labels task 1 as “traditionally male” and task 2 as “traditionally female,”

and screens𝑚 and𝑤 favorably for their respective tasks. Anticipating the discriminatory behavior

on the part of the principal, agents invest in the skills that they are screened favorably for and,

in turn, reinforce the use of specialized screening. In equilibrium, occupational segregation and

stereotypes emerge, whereby𝑚 and𝑤 are believed to possess the needed skills for succeeding in

different tasks, and they do so indeed despite being identical ex ante.

Results. We present two results that are analogous to Theorems 3.3 and 3.4. The first result

establishes the existence and uniqueness of specialized and non-specialized equilibria.

Theorem 6.2. Suppose that the regularity conditions stated in Theorem 3.3 hold for each 𝑡 ∈ {1, 2},
and hence that 0 < 𝜆(𝑐𝑡 ) < 𝜆∗ (𝑐𝑡 ) < 𝜆(𝑐𝑡 ) for each 𝑡 ∈ {1, 2}. Then the following statements are true:

(1) A non-specialized equilibrium always exists and is generically unique. When unique, the equilib-
rium induces both agents to invest in both skills when 𝜆 < 𝜆∗ (𝑐2), no agent to invest in any skill
when 𝜆 > 𝜆∗ (𝑐1), and both agents to invest in skill 1 but not skill 2 when 𝜆 ∈ (𝜆∗ (𝑐2), 𝜆∗ (𝑐1)).

(2) A specialized equilibrium exists if and only if

𝑐1

𝑐2
≥ 𝜇 (1 − 𝜇)

𝜇 (1 − 𝜇) and 𝜆 ∈ [𝜆(𝑐1), 𝜆(𝑐2)] .

Whenever a specialized equilibrium exists, it is unique.

Theorem 6.2 extends Theorem 3.3 tomultidimensional tasks and skills. In the non-specialized case,

the signal structures used to screen agents become less Blackwell informative as the attention cost

parameter increases. When the attention cost parameter is below 𝜆∗ (𝑐2), screening is meticulous for

both tasks, and agents best respond by investing in both skills. When the attention cost parameter

is above 𝜆∗ (𝑐1), screening is too sloppy to incentivize high levels of investment. For the in-between

case 𝜆 ∈ (𝜆∗ (𝑐2), 𝜆∗ (𝑐1)), screening provides agents with just enough incentives to invest in the

most valuable skill, but not enough incentives to invest in the other skill.

The specialized case arises when the attention cost parameter is intermediate. To induce one

and only one agent to invest in skill 𝑡 , 𝑡 ∈ {1, 2}, we need 𝜆 ∈ [𝜆(𝑐𝑡 ), 𝜆(𝑐𝑡 )]. Taking intersections
between skills, and simplifying using 𝜆(𝑐2) ≤ 𝜆(𝑐1) and 𝜆(𝑐2) ≤ 𝜆(𝑐1), we obtain [𝜆(𝑐1), 𝜆(𝑐2)] as
the parameter region that sustains specialization in an equilibrium. To ensure that 𝜆(𝑐1) ≤ 𝜆(𝑐2),
the two tasks must be sufficiently similar in terms of their costs and benefits to the agents, i.e.,

𝑐1/𝑐2 ≥ 𝜇 (1 − 𝜇)/𝜇 (1 − 𝜇). If the last condition fails, then both agents prefer to invest in the more

valuable skill, hence the force behind specialization will unravel.

The second result concerns which of the specialized and non-specialized equilibria is the most

profitable to the principal. The comparison is the most straightforward when the two tasks are

equally profitable to the principal, i.e., 𝛼1 = 𝛼2
.

Theorem 6.3. Let everything be as in Theorem 6.2, and suppose that 𝛼1 = 𝛼2. Then,



Submission # 18

(1) When the game has a specialized equilibrium and a non-specialized equilibrium in which both
agents invest in both skills, i.e., 𝜆 ∈ [𝜆(𝑐1), 𝜆(𝑐2)] ∩ [0, 𝜆∗ (𝑐2)], the non-specialized equilibrium
is the most profitable.

(2) When the game has a specialized equilibrium and a non-specialized equilibrium in which no
agent invests in any skill, i.e., 𝜆 ∈ [𝜆(𝑐1), 𝜆(𝑐2)] ∩ (𝜆∗ (𝑐1), +∞), the specialized equilibrium is
the most profitable.

(3) When the game has a specialized equilibrium and a non-specialized equilibrium in which both
agents invest in skill 1 but not skill 2, i.e., 𝜆 ∈ [𝜆(𝑐1), 𝜆(𝑐2)] ∩ (𝜆∗ (𝑐2), 𝜆∗ (𝑐1)], the specialized
equilibrium is the most profitable.

Parts (1) and (2) of Theorem 6.3 are immediate from Theorem 3.4. Part (3) of the theorem is new.

To understand the intuition behind it, notice that when the attention cost parameter is intermediate,

each agent has just enough incentives to invest in one skill, but no more. Now, who should invest in

which skill? In the non-specialized case, both agents invest in the same skill. As a result, the principal

has to compare and contrast them carefully every time a task needs to be assigned, which incurs a

significant attention cost. In the specialized case, agents are expected to opt into separate career

trajectories, one labeled as “traditionally male” and the other labeled as “traditionally female.” This

is achieved by giving stereotypical performance evaluations that favor𝑚 in the assignment of the

traditionally male task, and𝑤 in the assignment of the traditionally female task. Anticipating this,

𝑚 and𝑤 invest in different skills and specialize in different tasks. In turn, this allows the principal

to be rationally inattentive, favoring𝑚 unless𝑤 is strictly more productive in the assignment of

the male task, and doing the opposite for the female task.

Implications. There is ample evidence that men and women work on very different jobs even

within narrowly defined firms or industries (see Blau and Kahn, 2017 for a survey). Recent sociolog-

ical and experimental research stresses the role of gender-stereotypical performance evaluations

in sustaining and perpetuating this pattern. For example, after coding and analyzing managers’

written reviews of employees at a Fortune 500 tech company, Correll et al. [2020] find that women

are evaluated based on their personalities and likeabilities, and they are under-rewarded for traits

associated with men such as taking charges and being visionary. In a related lab experiment, Bohnet

et al. [2016] find that both genders are overlooked for counter-stereotypical tasks, although the

problem can be alleviated if employees are evaluated jointly as a team.

Stereotypical performance evaluation is also cited as a culprit for women’s underrepresentation

in STEM fields. Among others, Lavy and Sand [2018] compare the scores between school exams

graded by teachers and national exams graded blindly by external examiners. On subjects such as

math and sciences, a gender gap exists and is positively related to the teacher’s bias in favor of

boys. Female evaluators are not exempt from stereotypes: In a double-blinded study, Moss-Racusin

et al. [2012] find that both male and female faculties give lower ratings to female applicants for a

lab manager position, despite that the latter are equally capable as their male counterpart.

Our results throw new light on these empirical findings, by telling a story of endogenous

stereotype formation and occupational segregation based on limited attention only. While our

model abstracts away frommany important, practical, considerations—such as the differing attitudes

of men and women towards risks and competition, gender social roles, as well as factors inside and

outside families that affect women’s supply of labor, demand for flexibility, and cost of investing

in human capital (see Niederle and Vesterlund, 2011, Blau and Kahn, 2017, and Bertrand, 2018 for

surveys of these topics)—it singles out a new channel through which occupational segregation and

stereotypes could arise and perpetuate, and raises the possibility of curtailing these phenomena

through modulating the availability of attentional resources.
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A MODEL DISCUSSION
This appendix clarifies the roles played by the various assumptions and model ingredients.

Consider first Assumption 3.1, which has two parts. The first part: 𝜇 + 𝜇 > 1, is necessary for a

discriminatory equilibrium to exist. If, instead, 𝜇 + 𝜇 ≤ 1, then (𝑋,𝑌 ) must lie below the 45-degree

line in order to satisfy both agents’ incentive compatibility constraints (as depicted in Figure 4).

Since this area does not intersect with the red ray on which the optimal signal structure lies, no

discriminatory equilibrium exists when 𝜇 + 𝜇 ≤ 1.

𝑋

𝑌

𝐼𝐶𝑚 ∧ 𝐼𝐶𝑤

(1 − 𝜇)𝑋 + 𝜇𝑌 = 𝑐

𝜇𝑋 + (1 − 𝜇)𝑌 = 𝑐

𝑌 = 𝐴𝑋/𝐵

45
◦

Fig. 4. No discriminatory equilibrium exists when 𝜇 + 𝜇 ≤ 1.

The second part of Assumption 3.1: 𝑐 < 𝜇 (1 − 𝜇)/(𝐴 + 𝐵), ensures that 𝜆∗, 𝜆 > 0. We postpone

the proof of this claim to Appendix B, and focus here on its implication, namely in the benchmark

case where information acquisition is (almost) costless, i.e., 𝜆 ≈ 0, our game has a unique, impartial,

equilibrium that sustains the high effort profile. Given this, one can safely attribute all our findings—

especially those regarding the discriminatory equilibrium—to rational inattention.

Our story is incomplete without the competition between agents for the limited promotion

opportunity. Rational inattention turns this competition into a competition for the principal’s

limited attention, which in turn justifies the use of a discriminatory signal structure to screen

and select agents in the most profitable equilibrium. If, instead, the principal enters a separate

contractual relationship with each individual agent (as in, e.g., Coate and Loury, 1993 and Fosgerau

et al., ming), then the most profitable equilibrium signal structure between a principal-agent pair is

generically unique. This implies that discrimination cannot generically arise as the most profitable

equilibrium among ex-ante identical agents—a prediction that stands in sharp contrast to ours.

B PROOFS
Throughout this appendix, we follow the notational conventions developed in the main text.

Specifically, we use 𝝁 denote the profile of effort choices by the agents, and Δ𝜃 to denote the

differential productivity between 𝑚 and 𝑤 . For any signal structure 𝜋 , we use 𝜋 to denote the

average probability that 𝑚 is recommended for promotion, and write 𝑋 and 𝑌 for 𝜋 (1) − 𝜋 (0)
and 𝜋 (0) − 𝜋 (−1), respectively. Finally, recall the following definitions: Δ𝜇 B 𝜇 − 𝜇, 𝑐 B 𝐶/Δ𝜇,
𝐴 B 𝜇 (1 − 𝜇), 𝐵 B 𝜇 (1 − 𝜇), and 𝛾 B exp(1/𝜆). Note that 𝐴 > 𝐵, and that 𝛾 is decreasing in 𝜆 and

satisfies 𝛾 → +∞ as 𝜆 → 0 and 𝛾 → 1 as 𝜆 → +∞.
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B.1 Useful Lemmas and Their Proofs
Proof of Lemma 4.1. Fix any effort profile 𝝁 ∈ {𝜇, 𝜇}2

. By Yang [2020], the optimal signal for

𝝁, denoted simply by 𝜋 , uniquely exists, and it satisfies 𝜋 (Δ𝜃 ) ≡ 1 if E[exp(−Δ𝜃/𝜆) | 𝝁] ≤ 1,

𝜋 (Δ𝜃 ) ≡ 0 if E[exp(Δ𝜃/𝜆) | 𝝁] ≤ 1, and 𝜋 (Δ𝜃 ) ∈ (0, 1) ∀Δ𝜃 otherwise. Let 𝑝 (Δ𝜃 ) denote the
probability that Δ𝜃 occurs under 𝝁. Simplifying the last condition yields ∀Δ𝜃 ∈ {−1, 0, 1}:

𝜋 (Δ𝜃 )


= 1 if 𝑝 (1)/𝑝 (−1) ≥ 𝛾,

= 0 if 𝑝 (1)/𝑝 (−1) ≤ 1/𝛾,
∈ (0, 1) else.

(1)

In what follows, we say that 𝜋 is degenerate in the first two case, and that it is nondegenerate in

the last case. When nondegenerate, 𝜋 satisfies the multinomial logit formula prescribed by Matějka

and McKay [2015]:

𝜋 (Δ𝜃 ) = 𝜋 exp(𝛾Δ𝜃 )
𝜋 exp(𝛾Δ𝜃 ) + 1 − 𝜋

∀Δ𝜃, (2)

where 𝜋 denotes the average probability that 𝜋 recommends𝑚 for promotion. Bayes plausibility

mandates that ∑︁
Δ𝜃 ∈{−1,0,1}

𝑝 (Δ𝜃 )𝜋 (Δ𝜃 ) = 𝜋, (3)

which, together with (2), pins down 𝜋 .

Part (1): When 𝝁 = (𝜇, 𝜇), we have 𝑝 (1) = 𝑝 (−1) = 𝜇 (1− 𝜇) and so 𝑝 (1)/𝑝 (−1) = 1 ∈ (1/𝛾,𝛾). Thus
𝜋 is always nondegenerate, and it is fully pinned down by (2) and (3). Solving 𝜋 explicitly yields:

𝜋 = 𝜋 (0) = 1

2

and 𝑋 = 𝑌 = 𝑔(𝛾) B 𝛾 − 1

2(𝛾 + 1) ,

where 𝑔 > 0 and 𝑔′ > 0 ∀𝛾 > 1. Since 𝛾 B exp(1/𝜆) is decreasing in 𝜆, the last result can be

rewritten as 𝑑𝑔(𝛾)/𝑑𝜆 < 0 ∀𝜆 > 0. The proof for the case 𝝁 = (𝜇, 𝜇) is analogous and hence is

omitted for brevity.

Part (2): When 𝝁 = (𝜇, 𝜇), we have 𝑝 (1) = 𝐴, 𝑝 (−1) = 𝐵, and so 𝑝 (1)/𝑝 (−1) = 𝐴/𝐵 > 1. Thus

𝑝 (1)/𝑝 (−1) < 1/𝛾 can never happen, whereas 𝑝 (1)/𝑝 (−1) ≥ 𝛾 holds if and only if

𝛾 ≤ 𝛾 B
𝐴

𝐵
, or equivalently 𝜆 ≥ ˘𝜆 B (ln𝛾)−1 .

For all 𝜆 < ˘𝜆, 𝜋 is nondegenerate and is fully pinned down by (2) and (3). Solving 𝜋 explicitly for

this case yields:

𝜋 = 𝜋 (0) = 𝛾𝐴 − 𝐵

(𝛾 − 1) (𝐴 + 𝐵) , 𝑋 = 𝑓 (𝛾) B (𝛾𝐴 − 𝐵) (𝛾𝐵 −𝐴)
(𝛾2 − 1) (𝐴 + 𝐵)𝐴 , and 𝑌 =

𝐴

𝐵
𝑓 (𝛾),

where 𝑓 > 0 and 𝑓 ′ > 0 ∀𝛾 > 𝛾 (or equivalently 𝑑 𝑓 (𝛾)/𝑑𝜆 < 0 ∀𝜆 < ˘𝜆). The proof for the case

𝝁 = (𝜇, 𝜇) is analogous and is thus omitted. □
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Proof of Lemma 4.2. For any given 𝜇𝑤 and 𝜋 ,𝑚 prefers to exert high effort rather than low effort

if and only if

𝜇 (1 − 𝜇𝑤)𝜋 (1) + (1 − 𝜇)𝜇𝑤𝜋 (−1) + [1 − 𝜇 (1 − 𝜇𝑤) − (1 − 𝜇)𝜇]𝜋 (0) −𝐶

≥ 𝜇 (1 − 𝜇𝑤)𝜋 (1) + (1 − 𝜇)𝜇𝑤𝜋 (−1) + [1 − 𝜇 (1 − 𝜇𝑤) − (1 − 𝜇)𝜇]𝜋 (0),
or equivalently

(1 − 𝜇𝑤)𝑋 + 𝜇𝑤𝑌 ≥ 𝑐 B
𝐶

Δ𝜇
.

Likewise,𝑤 prefers to exert high effort rather than low effort if and only if

(1 − 𝜇)𝜇𝑚𝜋 (1) + 𝜇 (1 − 𝜇𝑚)𝜋 (−1) + [1 − (1 − 𝜇)𝜇𝑚 − 𝜇 (1 − 𝜇𝑚)]𝜋 (0) −𝐶

≥ (1 − 𝜇)𝜇𝑚𝜋 (1) + 𝜇 (1 − 𝜇𝑚)𝜋 (−1) + [1 − (1 − 𝜇)𝜇𝑚 − 𝜇 (1 − 𝜇𝑚)]𝜋 (0),
or equivalently

𝜇𝑚𝑋 + (1 − 𝜇𝑚)𝑌 ≥ 𝑐. □

Proof of Lemma 5.2. Fix the effort profile 𝝁 to be (𝜇, 𝜇). Write the principal’s problem as:

E
[
𝑎Δ ˜𝜃 | 𝝁, 𝜋, 𝑎(·)

]
+ 𝜇𝑤 − 𝜆𝐼 (𝜋 | 𝝁) s.t. 1

2

≥ E [𝑎 | 𝝁, 𝜋, 𝑎(·)] .

Since 𝐼 (𝜋 | 𝝁) is convex in 𝜋 , and there clearly exists (𝜋, 𝑎(·)) that strictly satisfies the quota

constraint, the above problem satisfies Slater’s condition; and, hence, strong duality holds. Let 𝜈 ≥ 0

denote the Lagrange multiplier associated with the quota constraint, and define the Lagrangian

function as:

L(𝜋, 𝑎(·), 𝜈) = E
[
𝑎(Δ ˜𝜃 − 𝜈) | 𝝁, 𝜋, 𝑎(·)

]
− 𝜆𝐼 (𝜋 | 𝝁) + 𝜇𝑤 + 𝜈

2

.

The primal and dual problems are:

max

𝜋,𝑎 ( ·)
min

𝜈≥0

L(𝜋, 𝑎(·), 𝜈) and min

𝜈≥0

max

𝜋,𝑎 ( ·)
L(𝜋, 𝑎(·), 𝜈), respectively.

Let (𝜋∗, 𝑎∗ (·), 𝜈∗) denote a solution to these problems. A careful inspection of the problem

max𝜋,𝑎 ( ·) L(𝜋, 𝑎(·), 𝜈∗) reveals its equivalence to the baseline problem, had the differential produc-

tivity between𝑚 and𝑤 been Δ𝜃 − 𝜈 . As a result, any solution to this problem, including (𝜋∗, 𝑎∗ (·)),
must satisfy 𝜋 : {−1, 0, 1} → Δ({0, 1}), 𝑎(0) = 0, and 𝑎(1) = 1. As before, write 𝜋∗ (Δ𝜃 ) for the
probability that 𝜋∗

recommends𝑚 for promotion in state Δ𝜃 , and 𝜋∗
for the average probability

that 𝜋∗
recommends𝑚 for promotion. Since the quota constraint must be binding at the optimum,

𝜈∗ > 0 and 𝜋∗
= 1/2 must hold by complementary slackness. Then

𝜋∗ (Δ𝜃 ) = 𝜋∗
exp(𝛾 (Δ𝜃 − 𝜈∗))

𝜋∗
exp(𝛾 (Δ𝜃 − 𝜈∗)) + 1 − 𝜋∗ =

exp(𝛾 (Δ𝜃 − 𝜈∗))
exp(𝛾 (Δ𝜃 − 𝜈∗)) + 1

∀Δ𝜃

by Matějka and McKay [2015], and 𝜈∗ can be obtained by solving:

1

2

=
∑︁

Δ𝜃 ∈{−1,0,1}
𝑝 (Δ𝜃 )𝜋 (Δ𝜃 ) = 𝐴𝜋∗ (1) + 𝐵𝜋∗ (−1) + (1 −𝐴 − 𝐵)𝜋∗ (0),

where 𝑝 (Δ𝜃 ) denotes the probability that Δ𝜃 occurs under 𝝁. Write the right-hand side of the last

equation as RHS(𝜈). Straightforward algebra shows that

RHS(0) − 1

2

=
𝐴 − 𝐵

2

exp(𝛾) − 1

exp(𝛾) + 1

> 0, lim

𝜈→+∞
RHS(𝜈) − 1

2

= −1

2

< 0, and
𝑑RHS

𝑑𝜈
(𝜈) < 0,

hence RHS(𝜈) = 1/2 has a unique, positive, root. This completes the proof that the optimal signal

structure for (𝜇, 𝜇) subject to (Q) uniquely exists.
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It remains to show that 𝜋∗
satisfies 𝜋∗ (0) < 1/2 and 𝑋 > 𝑌 . The first claim is easy to prove:

𝜋∗ (0) = exp(−𝜈∗)/(exp(−𝜈∗) + 1) < 1/2. Further algebra shows that

𝑋 =
exp(𝛾) − 1

[exp(𝛾 (1 − 𝜈∗)) + 1] [exp(𝛾𝜈∗) + 1] , 𝑌 =
exp(𝛾𝜈∗) (exp(𝛾) − 1)

[exp(𝛾𝜈∗) + 1] [exp(𝛾 (𝜈∗ + 1)) + 1] ,

and hence that

𝑋

𝑌
=

exp(𝛾 (𝜈∗ + 1)) + 1

exp(𝛾) + exp(𝛾𝜈∗) > 1,

where the last inequality holds because exp(·) is convex. □

Proof of Lemma 5.5. For any positive level 𝑠 > 0 of subsidy, we can formalize the principal’s

problem as follows:

max

𝜋,𝑎 ( ·)
E
[
𝑎(Δ ˜𝜃 − 𝑠) | 𝝁, 𝜋, 𝑎(·)

]
+ (𝜇𝑤 + 𝑠) − 𝜆𝐼 (𝜋 | 𝝁).

By Matějka and McKay [2015], the optimal signal structure must satisfy:

𝜋 (Δ𝜃 ) = 𝜋 exp(𝛾 (Δ𝜃 − 𝑠))
𝜋 exp(𝛾 (Δ𝜃 − 𝑠)) + 1 − 𝜋

∀Δ𝜃

if it is nondegenerate. Letting 𝜋 = 1/2 in the above expression and repeating the argument for

Lemma 5.2 shows that 𝑋 > 𝑌 . □

Lemma B.1. Let 𝑉 (𝝁;𝛾) and 𝐼 (𝝁;𝛾) denote the expected revenue and mutual information cost
generated by the optimal signal structure for 𝝁, respectively, when the attention cost parameter is
(ln𝛾)−1. Then 𝑉 (·;𝛾) satisfies:

𝑉 ((𝜇, 𝜇);𝛾) = 𝜇 + 𝜇 (1 − 𝜇)𝛾 − 1

𝛾 + 1

,

𝑉 ((𝜇, 𝜇);𝛾) = 𝜇 + 𝛾𝐴 − 𝐵

𝛾 + 1

,

𝑉 ((𝜇, 𝜇);𝛾) = 𝜇 + 𝜇 (1 − 𝜇)𝛾 − 1

𝛾 + 1

,

𝑉 ((𝜇, 𝜇);𝛾) −𝑉 ((𝜇, 𝜇);𝛾) = Δ𝜇

𝛾 + 1

[𝛾 − (𝛾 − 1)𝜇],

𝑉 ((𝜇, 𝜇);𝛾) −𝑉 ((𝜇, 𝜇);𝛾) = Δ𝜇

𝛾 + 1

[𝛾 − (𝛾 − 1)𝜇],

𝑑

𝑑𝛾
𝑉 ((𝜇, 𝜇);𝛾) −𝑉 ((𝜇, 𝜇);𝛾) = Δ𝜇 (1 − 2𝜇)

(𝛾 + 1)2
,

and
𝑑

𝑑𝛾
𝑉 ((𝜇, 𝜇);𝛾) −𝑉 ((𝜇, 𝜇);𝛾) =

Δ𝜇 (1 − 2𝜇)
(𝛾 + 1)2

,
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whereas 𝐼 (·;𝛾) satisfies:

𝐼 ((𝜇, 𝜇);𝛾) = 2𝜇 (1 − 𝜇) [ℎ
(

𝛾

𝛾 + 1

)
− ℎ

(
1

2

)
],

𝐼 ((𝜇, 𝜇);𝛾) = 𝐴ℎ

(
𝛾 (𝛾𝐴 − 𝐵)
(𝛾2 − 1)𝐴

)
+ 𝐵ℎ

(
𝛾𝐴 − 𝐵

(𝛾2 − 1)𝐵

)
− (𝐴 + 𝐵)ℎ

(
𝛾𝐴 − 𝐵

(𝛾 − 1) (𝐴 + 𝐵)

)
,

𝐼 ((𝜇, 𝜇);𝛾) = 2𝜇 (1 − 𝜇) [ℎ
(

𝛾

𝛾 + 1

)
− ℎ

(
1

2

)
],

𝑑

𝑑𝛾
𝐼 ((𝜇, 𝜇);𝛾) − 𝐼 ((𝜇, 𝜇);𝛾) = Δ𝜇 (1 − 2𝜇) ln𝛾

(𝛾 + 1)2
,

and
𝑑

𝑑𝛾
𝐼 ((𝜇, 𝜇);𝛾) − 𝐼 ((𝜇, 𝜇);𝛾) =

Δ𝜇 (1 − 2𝜇) ln𝛾

(𝛾 + 1)2
,

where ℎ(𝑥) B 𝑥 ln𝑥 + (1 − 𝑥) ln(1 − 𝑥) ∀𝑥 ∈ [0, 1].

Proof. In the proof of Lemma 4.1, we solved for the optimal signal structure for any given 𝝁.
Substituting these solutions into the expressions for 𝑉 (·;𝛾) and 𝐼 (·;𝛾) gives the desired result. We

omit most algebra, but point out an intermediate result we used when calculating 𝐼 (𝝁;𝛾) − 𝐼 (𝝁 ′
;𝛾),

𝝁 ≠ 𝝁 ′
:

𝑑

𝑑𝛾
𝐼 ((𝜇, 𝜇);𝛾) = 2𝜇 (1 − 𝜇) ln𝛾

(𝛾 + 1)2
,
𝑑

𝑑𝛾
𝐼 ((𝜇, 𝜇);𝛾) = (𝐴 + 𝐵) ln𝛾

(𝛾 + 1)2
,

and

𝑑

𝑑𝛾
𝐼 ((𝜇, 𝜇);𝛾) =

2𝜇 (1 − 𝜇) ln𝛾

(𝛾 + 1)2
.

This result follows from doing lengthy algebra, which is available upon request. □

B.2 Proofs of Theorems and Propositions
Proof of Theorem 3.3. The following observation will be useful for the proof: Under Assumption

3.1: 𝜇 + 𝜇 > 1 and 𝑐 < 𝜇 (1 − 𝜇)/(𝐴 + 𝐵), 𝑐 < min{1/2, 𝜇 (1 − 𝜇)/(𝐴 + 𝐵)} must hold, because

𝜇 (1 − 𝜇)
𝐴 + 𝐵

− 1

2

=
Δ𝜇 (1 − 2𝜇)
2(𝐴 + 𝐵) < 0 and

𝜇 (1 − 𝜇)
𝐴 + 𝐵

−
𝜇 (1 − 𝜇)
𝐴 + 𝐵

=
Δ𝜇 (1 − 𝜇 − 𝜇)

𝐴 + 𝐵
< 0.

Part (1): Combining Lemma 4.1(1) and Lemma 4.2 shows that (𝜇, 𝜇) can be sustained in an equi-

librium if and only if 𝑔(𝛾) ≥ 𝑐 . Since 𝑔(1) = 0, 𝑔′ > 0 on (1, +∞), and lim𝛾→+∞ 𝑔(𝛾) = 1/2 > 𝑐 ,

𝑔(𝛾) ≥ 𝑐 if and only if

𝛾 ≥ 𝛾∗ B 𝑔−1 (𝑐), or equivalently 𝜆 ≤ (ln𝛾∗)−1 B 𝜆∗ > 0.

When this condition fails, we have 𝑔(𝛾) < 𝑐 and so can sustain (𝜇, 𝜇) can in an equilibrium. At

𝛾 = 𝛾∗ (or 𝜆 = 𝜆∗), both (𝜇, 𝜇) and (𝜇, 𝜇) can be sustained in equilibrium.

Part (2): We can sustain (𝜇, 𝜇) in an equilibrium if and only the optimal signal structure for (𝜇, 𝜇)
satisfies (i) 𝑋 = 𝑓 (𝛾), (ii) 𝑌 = 𝐴𝑋/𝐵, and (iii) agents’ incentive compatibility constraints, i.e.,

(1 − 𝜇)𝑋 + 𝜇𝑌 ≥ 𝑐 and 𝜇𝑋 + (1 − 𝜇)𝑌 ≤ 𝑐 . Solving (ii) and (iii) simultaneously yields 𝑋 ∈ [𝑋,𝑋 ],
where

𝑋 =
𝑐 (1 − 𝜇)

1 − 𝜇
and 𝑋 =

𝑐𝜇

𝜇
.



Submission # 26

Note that 𝑋 and 𝑋 are both independent of 𝛾 . Moreover, 𝑋 < 𝐵/(𝐴 + 𝐵) because
𝑋 < 𝐵/(𝐴 + 𝐵) ⇐⇒ 𝑐 < 𝜇 (1 − 𝜇)/(𝐴 + 𝐵) ⇐= Assumption 3.1,

and 𝑋 < 𝐵/(𝐴 + 𝐵) because

𝑋 =
𝑐𝜇

𝜇
<

𝜇 (1 − 𝜇)
𝐴 + 𝐵

𝜇

𝜇
=

𝐵

𝐴 + 𝐵
.

Together with 𝑓 ′ > 0 ∀𝛾 ∈ (𝛾, +∞), 𝑓 (𝛾) = 0, and lim𝛾→+∞ 𝑓 (𝛾) = 𝐵/(𝐴 + 𝐵), these observations
imply that (i) holds if and only if 𝛾 ∈ [𝛾,𝛾], where

𝛾 B 𝑓 −1 (𝑋 ) and 𝛾 B 𝑓 −1 (𝑋 )

are both finite. Define

𝜆 B (ln𝛾)−1
and 𝜆 B (ln𝛾)−1,

and note that 0 < 𝜆 < 𝜆 < ˘𝜆 < +∞.

It remains to show that 𝜆 < 𝜆∗ (equivalently 𝛾∗ < 𝛾 ) always holds, and that 𝜆∗ < 𝜆 (equivalently

𝛾 < 𝛾∗) holds under additional conditions. To show that 𝛾∗ < 𝛾 , rewrite 𝑓 (𝛾) = 𝑋 as

𝜑 (𝛾) B (𝛾𝐴 − 𝐵) (𝛾𝐵 −𝐴)
(𝛾2 − 1)𝜇 (1 − 𝜇) (𝐴 + 𝐵) = 𝑐,

where 𝜑 : [𝛾, +∞) → R satisfies 𝜑 (𝛾) = 0 and 𝜑 ′ > 0 ∀𝛾 > 𝛾 . Then 𝛾 is the unique root of 𝜑 (𝛾) = 𝑐 ,

and 𝛾∗ is the unique root of 𝑔(𝛾) = 𝑐 , where 𝑔 : [1, +∞) → R satisfies 𝑔(1) = 0 and 𝑔′ > 0 ∀𝛾 > 1.

Tedious algebra shows that

𝑑

𝑑𝛾

𝜑 (𝛾)
𝑔(𝛾) =

2(𝐴 − 𝐵)2 (𝛾 + 1)
𝜇 (1 − 𝜇) (𝐴 + 𝐵) (𝛾 − 1)3

> 0

and that

lim

𝛾→+∞
𝜑 (𝛾) = 𝜇 (1 − 𝜇)

𝐴 + 𝐵
<

1

2

= lim

𝛾→+∞
𝑔(𝛾).

Therefore, 𝜑 (𝛾) < 𝑔(𝛾) ∀𝛾 ∈ [𝛾, +∞), and so 𝛾∗ < 𝛾 .

To pin down the conditions for 𝛾 < 𝛾∗ to hold, rewrite 𝑓 (𝛾) = 𝑋 as

𝜓 (𝛾) B
𝜇 (1 − 𝜇)
𝜇 (1 − 𝜇)𝜑 (𝛾) = 𝑐,

and 𝛾 as the unique root of𝜓 (𝛾) = 𝑐 . From the above derivation, we know that

𝑑

𝑑𝛾

𝜓 (𝛾)
𝑔(𝛾) > 0

and that

lim

𝛾→+∞
𝜓 (𝛾) − lim

𝛾→+∞
𝑔(𝛾) =

𝜇 (1 − 𝜇)
𝐴 + 𝐵

− 1

2

=
Δ𝜇 (2𝜇 − 1)
2(𝐴 + 𝐵) .

Thus 𝛾∗ > 𝛾 if and only if 𝜇 > 1/2 and

𝑐 > 𝑔(𝛾), (4)

where𝛾 is the unique root of𝑔(𝛾) = 𝜓 (𝛾). Numerical analysis shows that (4) can hold simultaneously

with Assumption 3.1. □

Proof of Theorem 3.4. We proceed in three steps.
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Step 1. By Lemma B.1, the following must hold for all 𝛾 > 1:

𝑉 ((𝜇, 𝜇);𝛾) −𝑉 ((𝜇, 𝜇);𝛾) = Δ𝜇

𝛾 + 1

[2𝛾 − (𝛾 − 1) (𝜇 + 𝜇)] > 0,

and 𝐼 ((𝜇, 𝜇);𝛾) − 𝐼 ((𝜇, 𝜇);𝛾) = −2Δ𝜇 (𝜇 + 𝜇 − 1) [ℎ
(

𝛾

𝛾 + 1

)
− ℎ

(
1

2

)
] < 0,

where the last inequality follows from the assumption that 𝜇+𝜇 > 1 and the fact that argmin[0,1]ℎ =

1/2. Thus at 𝛾 = 𝛾∗, the impartial equilibrium sustaining (𝜇, 𝜇) is more profitable than the impartial

equilibrium sustaining (𝜇, 𝜇). The remaining analysis divides [𝛾,𝛾] into two disjoint intervals

[𝛾,𝛾∗) and [𝛾∗, 𝛾]. The most profitable impartial equilibrium sustains (𝜇, 𝜇) on the first interval,

and (𝜇, 𝜇) on the second interval.

Step 2. Show that the discriminatory equilibrium is the most profitable equilibrium on [𝛾,𝛾∗).
Write Δ𝑉 (𝛾) for𝑉 ((𝜇, 𝜇);𝛾)−𝑉 ((𝜇, 𝜇);𝛾), Δ𝐼 (𝛾) for 𝐼 ((𝜇, 𝜇);𝛾)−𝐼 ((𝜇, 𝜇);𝛾), and Δ𝑅(𝛾) for Δ𝑉 (𝛾)−
Δ𝐼 (𝛾)/ln𝛾 . We wish to show that Δ𝑉 (𝛾) − Δ𝐼 (𝛾)/ln𝛾 > 0. First, recall from Lemma B.1 that

∀𝛾 ∈ [𝛾, +∞):

Δ𝑉 (𝛾) > 0 and

𝑑

𝑑𝛾
Δ𝐼 (𝛾) =

Δ𝜇 (1 − 2𝜇) ln𝛾

(𝛾 + 1)2
.

Thus when 𝜇 > 1/2 (as required by the theorem), Δ𝐼 (𝛾) is decreasing in 𝛾 on [𝛾, +∞). Then from

Δ𝐼 (𝛾) = 0 − 2𝜇 (1 − 𝜇) [ℎ
(

𝛾

𝛾 + 1

)
− ℎ

(
1

2

)
] < 0, (∵ 𝛾 > 1 and argmin[0,1]ℎ = 1/2)

it follows that Δ𝐼 (𝛾) < 0 ∀𝛾 ≥ 𝛾 , and hence that Δ𝑅(𝛾) > 0 ∀𝛾 ≥ 𝛾 as desired.

Step 3. Show that the discriminatory equilibrium is the least profitable equilibrium on [𝛾∗, 𝛾].
Write Δ𝑉 (𝛾) for𝑉 ((𝜇, 𝜇);𝛾)−𝑉 ((𝜇, 𝜇);𝛾), Δ𝐼 (𝛾) for 𝐼 ((𝜇, 𝜇);𝛾)−𝐼 ((𝜇, 𝜇);𝛾), and Δ𝑅(𝛾) for Δ𝑉 (𝜆)−
Δ𝐼 (𝛾)/ln𝛾 . Since

Δ𝐼 (𝛾) = 2𝜇 (1 − 𝜇) [ℎ
(

𝛾

𝛾 + 1

)
− ℎ

(
1

2

)
] − 0 > 0 (∵ 𝛾 > 1 and argmin[0,1]ℎ = 1/2)

and

𝑑

𝑑𝛾
Δ𝐼 (𝛾) = Δ𝜇 (1 − 2𝜇) ln𝛾

(𝛾 + 1)2
< 0, (∵ 𝜇 > 1

2
)

either Δ𝐼 (𝛾) > 0 ∀𝛾 ∈ [𝛾, +∞), or it single-crosses the horizontal line from above at some 𝛾 > 𝛾 .

Then from

𝑑

𝑑𝛾
Δ𝑅(𝛾) = 𝑑

𝑑𝛾
[Δ𝑉 (𝛾) − 1

ln𝛾
Δ𝐼 (𝛾)]

=
𝑑Δ𝑉 (𝛾)

𝑑𝛾
− 1

ln𝛾

𝑑Δ𝐼 (𝛾)
𝑑𝛾

+ Δ𝐼 (𝛾)
𝛾 (ln𝛾)2

=
Δ𝜇 (1 − 2𝜇)
(𝛾 + 1)2

− 1

ln𝛾

Δ𝜇 (1 − 2𝜇) ln𝛾

(𝛾 + 1)2
+ Δ𝐼 (𝛾)
𝛾 (ln𝛾)2

(∵ Lemma B.1)

=
Δ𝐼 (𝛾)
𝛾 (ln𝛾)2

,

it follows that Δ𝑅(𝛾) is either monotonically increasing on [𝛾, +∞), or it first increases on [𝛾,𝛾]
and then decreases on (𝛾, +∞). In both situations, we have

lim

𝛾→+∞
Δ𝑅(𝛾) = lim

𝛾→+∞
Δ𝑉 (𝛾) − 0 · lim

𝛾→+∞
Δ𝐼 (𝛾) = Δ𝜇 (1 − 𝜇) − 0 > 0.
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Thus if Δ𝑅(𝛾) > 0, then Δ𝑅(𝛾) > 0 ∀𝛾 ∈ [𝛾, +∞) as desired.
To show that Δ𝑅(𝛾) > 0, note that 𝑉 ((𝜇, 𝜇);𝛾) = 𝜇 by Lemma B.1, and that 𝐼 (𝜇, 𝜇);𝛾) = 0 by

Lemma 4.1. Also note that𝑉 ((𝜇, 𝜇);𝛾)− 1

ln𝛾
𝐼 ((𝜇, 𝜇);𝛾) ≥ 𝜇, where 𝜇 is the expected profit generated

by (𝜇, 𝜇) if the principal uses a degenerate signal structure that recommends 𝑚 for promotion

for sure, and the inequality follows from optimality, i.e., the optimal signal structure for (𝜇, 𝜇)
generates a (weakly) higher expected profit to the principal than the degenerate signal structure.

Taken together, we conclude that Δ𝑅(𝛾) > Δ𝜇 > 0 as conjectured. □

Proof of Theorems 5.1 and 5.4. Combining Lemmas 5.2 and 5.5 with the graphical arguments

offered in Section 5 gives the desired results. □

Proof of Theorem 6.2. For starters, notice that for each task 𝑡 ∈ {1, 2} and effort profile 𝝁𝑡 =

(𝜇𝑡𝑚, 𝜇𝑡𝑤), the principal’s problem is the same as before. Thus, what is left is to verify that the joint

signal structure (𝜋1, 𝜋2) satisfies agents’ incentive compatibility constraints. Compared to the

baseline model, agents can now commit two-step deviations that revise their effort choices for both

tasks, in addition to one-step deviations that revise their effort choices for a single task. However,

since their problems are additive separable across tasks, it suffices to deter one-step deviations

only. Given this, we can solve the multidimensional problem as two separate single-dimensional

problems—an approach we will follow in the remainder of the proof.

Part (1): The optimal signal structure for ((𝜇, 𝜇), (𝜇, 𝜇)) is incentive compatible if and only if

𝜆 ≤ min{𝜆∗ (𝑐1), 𝜆∗ (𝑐2)}. Since 𝑐1 ≤ 𝑐2
and 𝜆∗ (·) is decreasing in its argument, the last condition

is equivalent to 𝜆 ≤ 𝜆∗ (𝑐2). Likewise, the optimal signal structure for ((𝜇, 𝜇), (𝜇, 𝜇)) is incentive
compatible if and only if 𝜆 ≥ max{𝜆∗ (𝑐1), 𝜆∗ (𝑐2)} = 𝜆∗ (𝑐1), and the optimal signal structure

for ((𝜇, 𝜇), (𝜇, 𝜇)) is incentive compatible if and only if 𝜆 ∈ [𝜆∗ (𝑐2), 𝜆∗ (𝑐1)]. The optimal signal

structure for ((𝜇, 𝜇), (𝜇, 𝜇)) isn’t incentive compatible unless 𝑐1 = 𝑐2
.

Part (2): The optimal signal structure for ((𝜇, 𝜇), (𝜇, 𝜇)) is incentive compatible if and only if

𝜆 ∈ ∩2

𝑡=1
[𝜆(𝑐𝑡 ), 𝜆(𝑐𝑡 )]. Since 𝜆(·) and 𝜆(·) are decreasing in their arguments, the last expression is

a nonempty set if and only if 𝜆(𝑐1) ≤ 𝜆(𝑐2). To reduce this condition to primitives, let (𝑋,𝐴𝑋/𝐵)
be the optimal signal structure for (𝜇, 𝜇) when the attention cost parameter is given by 𝜆. In the

proof of Theorem 3.3, we established that 𝜆 ≥ 𝜆(𝑐1) if and only if

𝑋 ≤ 𝑋 (𝑐1) =
𝑐1𝜇

𝜇
,

and that 𝜆 ≥ 𝜆(𝑐2) if and only if

𝑋 ≥ 𝑋 (𝑐2) = 𝑐2 (1 − 𝜇)
1 − 𝜇

.

Thus 𝜆(𝑐1) ≤ 𝜆(𝑐2) if and only if 𝑋 (𝑐1) ≥ 𝑋 (𝑐2), which, after simplifying, becomes

𝑐1

𝑐2
≥ 𝜇 (1 − 𝜇)

𝜇 (1 − 𝜇) .

Before we conclude, notice that the method developed above also speaks to situations in which

agents undertake the same level of investment in one task, but different levels of investment in the

other task. For example, the optimal signal structure for ((𝜇, 𝜇), (𝜇, 𝜇)) is incentive compatible if and
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only if 𝜆 ≤ 𝜆∗ (𝑐1) and 𝜆 ∈ [𝜆(𝑐2), 𝜆(𝑐2)]. To save space, we choose not to exhaust all possibilities,

but instead focus on the specialized and non-specialized equilibria only. □

Proof of Theorem 6.3. Parts (1) and (2) are immediate from Theorem 3.4. To prove Part (3), let

𝑉 (𝝁;𝛾) and 𝐼 (𝝁;𝛾) denote the expected revenue and mutual information cost generated by the

optimal signal structure for 𝝁, respectively, when the attention cost parameter is (ln𝛾)−1
. Write

Δ𝑉 1 (𝛾) for𝑉 ((𝜇, 𝜇);𝛾) −𝑉 ((𝜇, 𝜇);𝛾), Δ𝑉 2 (𝛾) for𝑉 ((𝜇, 𝜇);𝛾) −𝑉 ((𝜇, 𝜇);𝛾), Δ𝐼 1 (𝛾) for 𝐼 ((𝜇, 𝜇);𝛾) −
𝐼 ((𝜇, 𝜇);𝛾), and Δ𝐼 2 (𝛾) for 𝐼 ((𝜇, 𝜇);𝛾) − 𝐼 ((𝜇, 𝜇);𝛾). We wish to show that

Δ𝑉 1 (𝛾) − 1

ln𝛾
Δ𝐼 1 (𝛾) − [Δ𝑉 2 (𝛾) − 1

ln𝛾
Δ𝐼 2 (𝛾)] < 0 ∀𝛾 ∈ [𝛾, +∞) .

In what follows, we prove a stronger claim, namely Δ𝑉 1 (𝛾) < Δ𝑉 2 (𝛾) and Δ𝐼 1 (𝛾) > Δ𝑉 2 (𝛾)
∀𝛾 ∈ [𝛾, +∞).

To show that Δ𝑉 1 (𝛾) < Δ𝑉 2 (𝛾), recall from Lemma B.1 that

Δ𝑉 1 (𝛾) = Δ𝜇

𝛾 + 1

[𝛾 − (𝛾 − 1)𝜇] and Δ𝑉 2 (𝛾) = Δ𝜇

𝛾 + 1

[𝛾 − (𝛾 − 1)𝜇] .

Thus,

Δ𝑉 1 (𝛾) − Δ𝑉 2 (𝛾) = − (𝛾 − 1) (Δ𝜇)2

𝛾 + 1

< 0

as desired.

It remains to show that Δ𝐼 1 (𝛾) > Δ𝐼 2 (𝛾) ∀𝛾 ∈ [𝛾, +∞). The claim is clearly true at 𝛾 = 𝛾 , since

Δ𝐼 1 (𝛾) > 0 and Δ𝐼 2 (𝛾) < 0. It is also true when 𝛾 is very large, since

lim

𝛾→+∞
Δ𝐼 1 (𝛾) − Δ𝐼 2 (𝛾)

= 2[𝜇 (1 − 𝜇) + 𝜇 (1 − 𝜇)] ln 2 − 2[𝐴 ln

(
𝐴 + 𝐵

𝐴

)
+ 𝐵 ln

(
𝐴 + 𝐵

𝐵

)
]

> 0. (Verify using Mathematica)

Then from

𝑑

𝑑𝛾
Δ𝐼 1 (𝛾) − Δ𝐼 2 (𝛾)

=
Δ𝜇 (1 − 2𝜇) ln𝛾

(𝛾 + 1)2
− Δ𝜇 (1 − 2𝜇) ln𝛾

(𝛾 + 1)2
(∵ Lemma B.1)

= −2(Δ𝜇)2
ln𝛾

(𝛾 + 1)2

< 0,

it follows that Δ𝐼 1 (𝛾) − Δ𝐼 2 (𝛾) is everywhere positive on [𝛾, +∞) as desired. □
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