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Abstract

Recent studies suggest that social behavior in experiments is driven by the desire to follow
injunctive norms. Our theory assigns a normative valence to each outcome based on the play-
ers’ utilities in this and all counterfactual outcomes. We postulate that each outcome’s valence
is inversely proportional to players’ aggregate dissatisfaction with that outcome, which de-
pends on the higher utilities that they could have received at other outcomes. Our model im-
poses structure on theories of norm-driven behavior, rendering them precise and falsifiable.
We consider a variety of illustrative applications, highlighting the intuition and explanatory
power of the model.
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1 Introduction

Decades of experimental studies of games played by strangers have revealed that people regu-
larly help, cooperate, share, trust, reciprocate, contribute, reward, and punish, even when doing
so is inconsistent with material payoff maximization. To account for these observations in a uni-
fying framework, economists have proposed that such prosocial behavior reflects an intrinsic
desire to adhere to commonly known (injunctive) social norms (Cappelen et al., 2007; López-
Pérez, 2008; Kessler and Leider, 2012; Krupka and Weber, 2013; Kimbrough and Vostroknutov,
2016); such norms are meant to capture shared agreement about the social appropriateness (and
inappropriateness) of various outcomes. Thus, these models assume that people consider not
only what they want to do (from the point of view of payoff maximization), but also what they
ought to do from the point of view of shared injunctive norms. When norm-adherence and
payoff-maximization conflict, people face a tradeoff, which is sometimes resolved in favor of
following the norm. It is straightforward to formulate this intuition in a utility function that
associates each outcome with both a payoff and a normative valence and thereby to generate
predictions about the influence of norms on behavior.

These models have been shown to have considerable explanatory power, but a lingering con-
cern has been that they provide the researcher with too many “modeler degrees of freedom.” To
give an analogy, payoff-maximization was not adopted as an axiom for its psychological plausi-
bility; rather it seems to be a straightforward application of the approach championed by Stigler
and Becker (1977), who suggest that economists ought to tie their hands by committing to the
view that people have broadly similar, consistent and stable preferences and restricting potential
explanations for behavioral differences to differences in income and prices. Similarly, defend-
ers of the social norms approach can point to explanatory successes (e.g., the ability to account
for observed effects of supposedly irrelevant changes to the action set, as in Krupka and Weber
(2013)), but critics (rightly) note that, without a theoretical account of how norms vary across
choice settings, there is little to discipline the set of possible predictions. Thus far, the response
to these concerns has been to use elicitation techniques to measure shared normative beliefs di-
rectly in each setting, allowing subjects’ reports on social norms to constrain the theory (see e.g.,
Kimbrough and Vostroknutov, 2018; Chang et al., 2019). With a little ingenuity, techniques like
those introduced in Krupka and Weber (2013) are readily adapted to elicit norms in any context,
but such an approach still implicitly allows norms to vary arbitrarily across subject pools and
choice settings. These concerns call for a theory that imposes some structure on norms.

With these matters in mind, we propose a simple, tractable, and falsifiable theory of norms
that can be applied using the standard tools of game theory. We assume that agents’ utilities are
well-described by “norm-dependent preferences” of the kind mentioned above, and we present
a theory that offers an account of the normative valence of available outcomes (or consequences).
That is, we take for granted that norm-following is a reasonable model of behavior, and we pro-
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vide a theory of the content of the norms by which individuals’ decisions are shaped under such
a model. Our approach evaluates the normative valence of each possible consequence in the
context of all other possible consequences. The idea is straightforward: the appropriateness of
the consequence that I choose (or that we achieve) depends on the set of other consequences
that I might have chosen (or that we might have achieved) instead. We ground the evaluation
of consequences in the psychology of dissatisfaction: each consequence has a utility associated
with it, and consequences worse for me than others that might have attained evoke dissatisfac-
tion.1 That is, we assume that each agent’s fundamentally self-interested desire to achieve better
outcomes for himself generates dissatisfaction when less preferred outcomes are achieved. We
then assume that normative agreement is founded on common acknowledgment of this source
of dissatisfaction, and thus, to define the normative valence of a particular outcome, we ag-
gregate dissatisfaction across all interested parties. The most socially appropriate consequence
is simply the one that minimizes overall dissatisfaction aggregated across individuals, and the
least socially appropriate consequence is the one that maximizes overall dissatisfaction. Agents
are other-regarding not directly, in the sense of caring about others’ utility, but indirectly, insofar
as their normative evaluations account for the dissatisfaction of all.

Our approach to generate a normative ranking of outcomes is not totally new – the notion
of Pareto optimality of an outcome, at the core of neoclassical welfare economics, also considers
the set of all possible outcomes and aggregates across individuals in a similar fashion. Indeed,
there is considerable overlap between our approach and the standard approach in the sense that
all Pareto improvements are considered normative improvements under our theory. However,
our theory goes a step further in (usually) providing criteria for choosing from among a set of
Pareto optimal allocations. In our model, not all Pareto optimal allocations generate the same
aggregate dissatisfaction.

Moreover, the idea that consideration of our own and others’ dissatisfaction can provide con-
straints on what constitutes normatively acceptable behavior is also not new. Here we draw on
a rich tradition that grounds the moral sense in our emotional responses to both attained and
foregone outcomes and in our ability to empathize with others, understanding the emotions that
they might feel in similar circumstances (Hume, 1740; Smith, 1759; Mackie, 1982; Prinz, 2007).
Like Adam Smith, we start with the assumption that people are motivated by their own interests;
they prefer certain outcomes and resent actions taken by others to prevent those outcomes from
being achieved. Yet we also assume that individuals consider the consequences of their behavior
for others, with “fellow-feeling” allowing us to more-or-less understand how others might feel
should a particular consequence attain and hence with normative judgments calibrated to tem-
per naked self-interest, bringing actions into line with what others will “go along with” (Smith

1There is a clear connection to the idea of regret, but in the model when norms are defined, this dissatisfaction is
prospective rather than retrospective. An appropriate term might be “pre-gret”.
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and Wilson, 2017).2 The key to our theory is the implication that what others will go along with
depends on what other possible outcomes are available to them.

To our knowledge, ours is the first model attempting to account for the content of norms in
games. As such, we certainly do not view this as the last word on the subject. Instead, our goal
is to show one way the problem can be approached, and then we take the model to data. In
particular, we assess the interpretive and predictive power of the model against experimental
evidence collated from a diverse set of studies from the literature on prosocial behavior and
social preferences.

Experiments have identified situations in which behavior is neatly characterized as inequity
averse, maximin, efficiency-seeking, reciprocal, punitive, and so on; this evidence has been sum-
marized and interpreted through the lens of social preferences, with new utility specifications
introduced to account for new observations. As noted above, economists working in the social
norms paradigm have pointed out that such diversity of behavior across settings can be recon-
ciled if one invokes a preference for following norms and allows norms to vary across settings.
Rhetorically, such accounts have attempted to be ecumenical, understanding particular social
preference models as special cases of the social norms model, with a particular social preference
formulation reflecting a particular environment-specific social norm. We also take this view, and
as we show below, behaviors predicted by each of the aforementioned kinds of social preferences
also arise naturally from our theory in particular environments.

We consider three applications of our theory, identifying norms and working out the im-
plications for behavior in 1) settings where subjects make choices over a set of simple two- or
three-person resource allocation vectors, 2) games that differ from one another only by the addi-
tion or subtraction of possible outcomes, and 3) second- and third-party punishment games. We
focus on these examples because each highlights an important feature of the theory and because
in each case, the theory makes clear predictions that we can assess in light of existing experimen-
tal evidence. In our Appendix we consider a variety of additional applications for the curious
reader.

We study allocation problems because these allow us to highlight precisely how norms are
shaped by the set of possible outcomes under the theory. Analyzing simple dictator games we
show how the theory predicts agents will choose one Pareto optimum among many. Analyzing
the games studied by Engelmann and Strobel (2004) and Galeotti et al. (2018), we show how
norms vary with the choice set, yielding norms that favor efficiency over equality in some cases,
equality over efficiency in others, and maximin if we assume sufficiently concave utility over
money. Thus, we highlight how our model connects to the social preferences literature – poten-
tially helping to explain why measured social preferences vary across environments.

2One interpretation of our theory could be in terms of a contractarian approach to morality, in which moral
rules are reached by the mutual consent of those who will abide by them (Sugden, 2018). It is interesting to ask
whether one could show that the dissatisfaction-minimizing norms are those to which people would be most likely
to mutually consent.
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We study the second set of games to highlight the implications of our assumption that the
normative evaluation of any one outcome depends on the entire set of possible outcomes. This
implies that, as the set of outcomes is expanded or contracted, the normative evaluation of the
remaining outcomes may change. In this context we study the modified dictator games of List
(2007) and the voluntary and involuntary trust games of McCabe et al. (2003), in which it has
been shown that adding (respectively, subtracting) an outcome has notable impact on behavior,
and we show that these observations can be interpreted naturally in the context of our model.

Finally, we study the third set of games to show how our work connects to existing exper-
iments on the emergence and maintenance of norms. It is well-established that norms emerge
and are sustained by punishment of violations (Kandori, 1992; Henrich, 2015); we argue that
such punishment is driven by resentment of actions that violate norms. We analyze second-party
punishment in a set of games due to Charness and Rabin (2002) and the third-party punishment
games introduced by Fehr and Fischbacher (2004) to highlight how our model makes predic-
tions about which actions constitute violations and hence which actions ought to be the target of
punishment (and how severely they ought to be punished).

At this point, it is worthwhile to highlight what the basic model does not do: the model does
not account for the effects of perceived ownership/entitlements or in- and out-group norms,
and thus it cannot explain some well-known context effects. So far, we have assumed that each
party has an equal prior claim and that norms are defined impartially, and so we treat each
outcome and each individual’s dissatisfaction equally in aggregation. Such a model captures the
normative valence of outcomes in games played among co-equal strangers, with no prior claims
and minimal environmental cues about what behavior(s) are appropriate or inappropriate. In
this sense, the basic theory is addressed to the spare contexts typically studied in economics experiments.
However, given the ample evidence that “context matters” and the implication that norms often
depend on such context, we also show how to extend the model to account for a variety of
contextual factors. In particular, we take as axiomatic the natural human tendencies to respect
ownership/entitlement claims and to favor kin, in-groups and high-status individuals in the
moral calculus. Then, we show that these can be handled in a straightforward way by applying
appropriate weights to individuals’ dissatisfaction during aggregation.

First, we show that ownership claims to some or all of an endowment can be handled by
weighting the dissatisfaction associated with a (counterfactual) reduction in payoffs by the strength
of each player’s ownership claim. Thus, the normative valence of each outcome can be made
to depend, in a natural way, on the strength of the prior claim that each player has to the pie.
We then show how entitlement to a “role” (e.g., when someone has earned the right to be a
decision-maker) can be handled by assuming that such entitlements reduce others’ resentment
of norm violations; someone who is entitled to a role is therefore less punishment-worthy than
someone who has no such entitlement. Finally, we show that the model can account for norms
of differential treatment of in- and out-groups, high status people, and kin if, when aggregating
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dissatisfaction across individuals to define the norm function, we weight the dissatisfaction of
others in proportion to the degree of kinship or status. To properly use the model and retain
falsifiability, it is essential that these weights be known (or estimated) prior to and separately
from the environment being studied. Thus, we illustrate these intuitions with examples from
the literature in which the weights can be estimated from prior data (e.g. via a within-subject
experimental design) or drawn from theory (e.g., coefficients of kinship from biological theory)
and then used to make predictions.

In sum, we present a theory of injunctive norms meant to complement existing work in both
the social norms and social preferences frameworks. The theory grounds norms in the psy-
chology of dissatisfaction. Dissatisfaction with a particular outcome is defined relative to all
other feasible outcomes, such that the evaluation of any particular outcome depends on what
other outcomes are possible. We assume that norms reflect the aggregation of such prospec-
tive dissatisfaction across individuals; that is, normative judgments arise from considering how
(dis)satisfied the self and others would be with a particular outcome (relative to alternatives),
with the normatively best outcome being the one that minimizes the aggregated dissatisfaction
of interested parties. We work out the implications of the model and confirm its interpretive
power by identifying how norms vary across a variety of experimental games and showing that
behavior in variants of those games changes in a manner consistent with changes in norms.

2 Model

2.1 Definition of Normative Valence

We begin with a definition of normative valence. Intuitively, this notion is meant to capture
shared beliefs about the appropriateness of an outcome. In what follows, we assume that nor-
mative valences depend on the final outcomes of a game and not on its strategic structure defined
by a sequence of moves, information sets, etc. Therefore, we start with a set C of consequences
with |C| > 1 and a finite set of players N (Osborne and Rubinstein, 1994). Let u : C → RN be a
utility function (synonymous with payoff function) that assigns to each consequence a vector of
players’ utilities (payoffs) with ui(c) meaning the payoff of player i for consequence c.3

As noted above, we define the normative valence of an outcome in terms of comparative
dissatisfaction, with the normatively most appropriate consequence in the set of possible conse-
quences, which we will call a norm, being the dissatisfaction-minimizing consequence. Thus,
we start with our definition of dissatisfaction for a particular consequence, and then we explain

3The definition of normative valence below is based on the payoffs defined by the function u. Thus, instead
of having a separate set of consequences and a utility function, we could have assumed that consequences are the
payoff vectors. However, this would not allow us to distinguish cases in which several consequences result in the
same payoff. This distinction turns out to generate important (testable) implications. See Example 4 in Appendix A
for details.
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how we aggregate across (counterfactual) consequences within an individual, and finally how
we aggregate dissatisfaction across individuals to define the normative valence of each conse-
quence.

The main ingredient of our definition of normative valence is

di(c1, c) := max{ui(c)− ui(c1), 0}, (1)

the dissatisfaction that player i feels about consequence c1 because of the possibility of c. This no-
tion of dissatisfaction is intended to capture attention to foregone possibilities. Thus, we assume
that if consequence c1 attains, then player i suffers dissatisfaction from it to an extent di(c1, c)
because c could have attained instead. Dissatisfaction is positive when c brings player i more
utility than c1 and zero otherwise.4

Next we define the aggregation of dissatisfaction within an individual, which we assume
depends on the entire set of possible counterfactual consequences. Let

Di(c1) :=
∫

c∈C
di(c1, c)dc (2)

denote the total dissatisfaction that player i feels with respect to c1. Thus, we assume that a low
utility outcome results in more (less) dissatisfaction the larger (smaller) is the set of counterfac-
tual higher-utility outcomes. Intuitively, this reflects the idea that one’s view of their present
circumstances may deteriorate upon the emergence of new opportunities that might make them
better off.5

Next, we define the overall dissatisfaction of c1—that is, dissatisfaction aggregated across all
individuals—as

D(c1) := ∑
i∈N

Di(c1). (3)

The function D captures the dissatisfaction of all players for each possible consequence in a
game. This second form of aggregation reflects our assumption that overall dissatisfaction of the
players depends only on individual dissatisfactions.6

4In a companion paper (Kimbrough and Vostroknutov, 2019), we provide an axiomatic foundation for our theory.
There we show how this particular shape for the dissatisfaction function follows from two axioms. That we should
take the difference in utilities is implied by the assumption that dissatisfaction does not depend on the overall
level of utility (i.e., adding a constant to the utilities of a player in all consequences does not change any player’s
dissatisfaction). The max operator reflects the assumption that one’s evaluation of c1 does not improve simply by
adding a less preferred option to the set. This implies that adding Pareto dominated consequences does not change
dissatisfaction.

5In Kimbrough and Vostroknutov (2019) this is stated as an axiom: for any set of consequences C that includes
c1, adding another consequence that gives i higher utility than ui(c1) makes her feel more dissatisfaction from c1.

6Axiomatically, overall dissatisfaction of c1 is constant as long as all individual dissatisfactions are constant,
regardless of which particular consequences cause each player to be dissatisfied with c1 personally (Kimbrough
and Vostroknutov, 2019).
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Finally, we assume that the normative valence associated with a consequence c1 is inversely
proportional to its overall dissatisfaction. Thus, the consequence which generates the least ag-
gregated dissatisfaction is considered the most socially appropriate (the norm), and the conse-
quence with the highest overall dissatisfaction the least socially appropriate. This conceptual
connection is grounded in the philosophical doctrines mentioned in the introduction (Hume,
1740; Smith, 1759; Mackie, 1982; Prinz, 2007) that trace the roots of morality to the negative emo-
tions that arise from personal circumstances and from our capacity to consider how others might
feel in similar circumstances. To put it formally, let Conv(−D) denote the convex hull of the im-
age of the function −D(c) in R; call 〈N, C, u, D〉 an environment; and consider the following
definition:

Definition 1. For an environment 〈N, C, u, D〉, call ηC : C → [−1, 1], defined as

ηC(c) := [−D(c)]Conv(−D),

where [·]Conv(−D) is the linear normalization from interval Conv(−D) to [−1, 1], a norm function
associated with 〈N, C, u, D〉. If D is a constant function, set ηC(c) = 1 for all c ∈ C.

In this definition, ηC is simply the negative of overall dissatisfaction, normalized to the inter-
val [−1, 1]. Thus, the consequence with ηC(c) = 1 is the most socially appropriate (the norm)
and the one with ηC(c) = −1, the least socially appropriate. If all consequences have the same
overall dissatisfaction, then we assume that ηC(c) ≡ 1 for all consequences. This last assump-
tion is important since it guarantees that a most appropriate consequence always exists, which
is necessary for the relative comparisons of norms across settings (see discussion in Appendix
D).

We continue with several examples that illuminate the properties of ηC, and then we briefly
consider how our method compares to a plausible alternative dissatisfaction aggregation method.

Example 1. Payoff Efficiency. It is clear from the definition of di above that, all else equal, an
increase in utility of a consequence for one player implies a weak increase in its appropriateness,
since dissatisfaction of this consequence must weakly decrease. For any choice from a set of two
consequences C = {c1, c2}, it turns out that the consequence with the highest sum of utilities
across the N players (highest payoff efficiency) is always the norm. Suppose the utilities of
the players for the consequences c1 and c2 are given by (a1, ..., aN) and (b1, ..., bN) and suppose
that a1 + ... + aN > b1 + ... + bN, or the efficiency of c1 is higher than the efficiency of c2. This
inequality can be rewritten as

∑
i:ai>bi

ai − bi > ∑
i:ai<bi

bi − ai ⇔ D(c2) > D(c1) ⇒ ηC(c1) = 1 and ηC(c2) = −1.
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Thus, in any set of just two consequences, the more appropriate consequence is the one with the
highest payoff efficiency. Notice that this property does not hold anymore if there are more than
two consequences. With three consequences, the most payoff efficient one does not necessarily
minimize dissatisfaction. This has implications for the measurement of social preferences in
allocation decisions to which we return below. �

Example 1 shows that the overall sum of utilities matters for the appropriateness of the con-
sequences, and in case of two consequences this also implies that the payoff efficient one is more
appropriate even if the consequences are not Pareto comparable. More generally, it is true that if
consequence c1 Pareto dominates c2 then c1 is (weakly) more appropriate than c2. We formulate
this statement as a proposition.

Proposition 1. In an environment 〈N, C, u, D〉 if consequence c1 ∈ C Pareto dominates c2 ∈ C then
ηC(c1) ≥ ηC(c2) with strict inequality if C is finite.

Proof. See Appendix F.

Thus, our definition of a norm function respects the core tenet of neoclassical welfare eco-
nomics – that economic forces should push society towards Pareto optimal outcomes. Never-
theless, as important as the idea of Pareto optimality is for economics, it fails to provide any
guidance on how an allocation ought to be chosen on the Pareto frontier. Our notion of a norm
function goes further and provides a criterion for choosing among Pareto optimal outcomes.
This is demonstrated by the next example in which all consequences have the same payoff effi-
ciency and are on the Pareto frontier.

Example 2. Dictator Game (DG). Suppose a dictator p has a pie of size 1 and chooses to give
c ≤ 1 to a receiver r (and is left with 1− c). The set of consequences is C = [0, 1], and the
utilities are given by u(c) = (up(c), ur(c)) = (1− c, c). For any consequence c ∈ C the total
dissatisfaction of the dictator is Dp(c) = c2/2, and the total dissatisfaction of the receiver is
Dr(c) = (1− c)2/2. Thus, overall dissatisfaction is given by

D(c) = Dp(c) + Dr(c) =
c2

2
+

(1− c)2

2
.

This is an upward sloping parabola which is minimized at c∗ = 1
2 . Thus, the norm function

ηC is a downward sloping parabola with the equal split being the most socially appropriate
consequence and the consequences c = 0 and c = 1 the least socially appropriate ones. This
example demonstrates how a norm favoring equality can emerge from the basically selfish desire
of all agents to receive higher payoffs and some regard for the dissatisfactions of others.

To see how dissatisfaction affects the norm when utilities of players are asymmetric, let us as-
sume that the receiver has a different “need” for the pie than the dictator. Suppose the receiver’s
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utility is ur(c) = γc, where γ > 0. To illustrate, suppose that receiver is in dire circumstances
and his γ is very large. Intuition suggests that in this case, it is appropriate to give him more
than half. Indeed, if we repeat the calculations above with γ included, we find that the norm
is now c∗ = γ/(1 + γ), which goes to 1 as γ grows to infinity. So, the model implies that it is
socially appropriate to give the receiver larger portions of the pie when she needs it more than
the dictator. �

Going back to the standard dictator game, it is important to highlight that the equal divi-
sion emerges as the most appropriate consequence because of the game’s symmetry. In general,
however, it is not true that “more equal” allocations are more appropriate than “less equal”
ones. Rather, in two-player constant-sum games, as in a DG, dissatisfaction is minimized for a
“midpoint” consequence, the consequence that has an equal number of better and worse conse-
quences for both players. We prove this result in a proposition.

Proposition 2. Suppose 〈N, C, u, D〉 has two players and K consequences c1, c2, ..., cK with utilities
x1 ≤ x2 ≤ ... ≤ xK for one player and a− x1 ≥ a− x2 ≥ ... ≥ a− xK for the other (a, x1, ..., xK ∈ R).
Then, for any j = 1..K− 1, D(cj+1)− D(cj) = (2j− K)(xj+1 − xj). Thus, the midpoint consequences
c K

2
and c K

2 +1, if K is even, and c K
2 +

1
2
, if K is odd, are the norm.

Proof. See Appendix F.

Proposition 2 implies that the most appropriate consequence, in case of constant payoff ef-
ficiency, is not the one that is the closest to an equal distribution of utility, as most models of
social preferences would suggest, but rather the one that is “equal” in terms of the number of
other undesirable consequences available: for the most appropriate consequence this number is
the same for both players. Thus, consequences which are very unequal in terms of utilities, can
still be considered normatively appropriate in specific contexts where most consequences give a
large portion of the pie to one player.

Propositions 1 and 2 show that both payoff efficiency and equality play a role in the concept
of normative valence that we propose. In general games the two notions can become intertwined
in non-trivial ways. In Example ?? in Appendix A we calculate normative valences in the two-
player Public Goods game and the Trust game. In both cases the most appropriate consequence
lies on the Pareto frontier, but in the Trust game it is not the one that gives players equal payoffs.

Our concept of normative valence can also account for other types of social preferences. In
some studies (e.g., Engelmann and Strobel, 2004; Baader and Vostroknutov, 2017), which we
discuss in more detail below, it is pointed out that a substantial proportion of subjects’ choices
is guided by maximin preferences conceptualized by Rawls (1971). In Appendix C we show that
maximin preferences can be expressed in our model if we assume diminishing marginal utility of
money, which essentially makes maximin a special case of efficiency preferences (see Section 3.1).
The general logic of how preferences for maximin emerge is similar to the situation described
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in Example 2 when players had different utilities of money: with concave utility “poor” players
suffer more dissatisfaction from similar outcomes than their “rich” counterparts. Thus, the norm
favors allocating more payoff to poor players.

Finally, we compare our definition of a norm function with a possible alternative and pro-
vide intuitive arguments that support our modeling choices. We define total dissatisfaction
of a consequence c1 as an integral of dissatisfactions of c1 because of all other consequences
in C (equation 2), which follows from the axioms described in Kimbrough and Vostroknutov
(2019). One alternative to our way of integration of dissatisfactions is counting only the high-
est dissatisfaction that each consequence achieves. Mathematically this can be expressed as
Di(c1) = maxc∈C di(c1, c), which is similar to the formulation proposed in Cox et al. (2018).
Let us check the properties of the norm function defined using this total dissatisfaction formula.
Notice that maxc∈C di(c1, c) = u∗i − ui(c1), where u∗i is the highest utility that player i can enjoy.
Therefore, D(c1) = u∗ −∑i∈N ui(c1), where u∗ is the sum of highest payoffs of all players. This
means that ηC(c1) is a positive affine transformation of the sum of payoffs in c1. So, the alterna-
tive dissatisfaction integration method ranks consequences according to their payoff efficiency
and does not differentiate among consequences with a fixed sum of payoffs.

In addition to not capturing equality, as our model does, the alternative dissatisfaction ag-
gregation above ignores the number of counterfactual consequences. Our specification does take
this into account, which we believe is important. We demonstrate this in Example 4 in Appendix
A. Taken together, these arguments provide support in favor of our model. In Kimbrough and
Vostroknutov (2019) we discuss different aggregation methods and their implications for norms
in much more detail.

2.2 Punishment

Our model of normative valence is incomplete without a punishment mechanism that would
maintain norm compliance by deterring selfish urges to gain more payoff at the expense of
breaking the norm. There is a wide consensus that without such punishment mechanisms, the
evolution of social norms and preferences for following them would be impossible (Chudek and
Henrich, 2011; Henrich, 2015). In the realm of incentivized economic behavior, the concept of
“altruistic punishment” proposed by Fehr and Gächter (2002) reflects this idea: people punish
norm violators for the sake of encouraging norm adherence and will even incur punishment
costs without regard for personal benefit in the form of future payoffs, reputation, etc. The au-
thors show experimentally that altruistic punishment is indeed a common phenomenon.7 From
the normative perspective, punishment of violators is a norm in itself and is thus followed in
the same way other norms are. Kimbrough and Vostroknutov (2016) provide evidence in sup-

7In our opinion the term “altruistic punishment” is not very well suited for the description of this phenomenon.
After all, the incentives to punish come from the desire to follow norms, which do not have to be altruistic.
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port of this conjecture: they find that subjects with high/low propensity to adhere to norms
also have high/low rejection thresholds in the Ultimatum game (UG). This result suggests that
punishment in the UG is normative in nature.

We use this idea to model normative reaction to an action by a player, which is not consis-
tent with achieving the most socially appropriate consequence. We assume that individuals who
observe norm violations by others feel resentment and that this resentment undergirds a second
norm: one ought to punish norm violators. Punishment mechanisms have been modeled before
in theories of reciprocity (see e.g., Dufwenberg and Kirchsteiger, 2004; Falk and Fischbacher,
2006). However, our approach is different in that we conjecture that a secondary norm (of pun-
ishment) is activated when the primary norm is not followed in a particular setting.

We start with an environment 〈N, C, u, D〉 that defines the normative valences of conse-
quences and assume that player i chooses one of the actions from some set A. Each choice
a ∈ A restricts the set of reachable consequences to Ca ⊆ C, which nevertheless does not change
the norm function ηC associated with them since player i made her choices taking all possible
consequences into account. Let M = argmaxc∈C ηC(c) be the set of the most socially appropri-
ate consequences, and suppose that action a is chosen so that Ca ∩ M = ∅. In other words,
player i has chosen an action that makes all most socially appropriate consequences unreach-
able. We consider such a choice a norm violation. The resentment of this violation is measured
by the difference between the normative valence for the most socially appropriate consequence
maxc∈C ηC(c), which now cannot be reached, and the most socially appropriate consequence
that can still be obtained after a was chosen (maxc∈Ca ηC(c)).8 Denote this difference by

ra := max
c∈C

ηC(c)−max
c∈Ca

ηC(c).

The next step is to determine how player i, who violated the norm, should be punished. Pun-
ishment is a complex phenomenon, and there might be many reasons for it: the desire to achieve
the most appropriate consequence, revenge, reputation concerns, etc. It is not our goal here
to capture all these motives, as the empirical evidence on their relative prominence is, at best,
scarce. Therefore, we concentrate on the two core principles that punitive laws are universally
based on. One important purpose of punishment is deterrence, which means that the amount of
punishment should be large enough that a player does not have an incentive to violate the norm.
Another is “an eye for an eye” principle (EE), which states that the amount of punishment should
be proportional to ra, the degree of norm violation.

8In defining the degree of norm violation in this way we make an implicit assumption that after a was chosen
there remains a consensus among players that the consequence with normative valence maxc∈Ca ηC(c) can still
be achieved. This “optimistic” scenario is by no means the only way the degree of violation could be perceived.
However, whether this is so, or whether the degree of violation is calculated differently, is an empirical question that
we do not try to answer in this paper and instead leave for future experimental investigations. What is important
is that the degree of violation is loosely monotonic in ra as we define it.
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To construct the normative valences pertaining to punishment we determine, for each possi-
ble payoff of violator i, how “punishment-appropriate” it would be, given that she chose action
a (with ra > 0). We highlight three important elements: 1) the payoff that i would have gotten in
the most socially appropriate consequence, uim = maxc∈M ui(c), or the payoff that she chose to
forgo when choosing a; 2) the minimal payoff that she can obtain in the game, ui = minc∈C ui(c),
which serves as a reference point for the harshest punishment possible; and 3) the payoff that i
seemingly “aimed at” receiving after choosing a, ūia = maxc∈Ca ui(c).9 The deterrence principle
says that it is very inappropriate for i to receive a payoff that exceeds m = min{uim, ūia}. In most
cases ūia > uim, thus, after i chose action a, we assume that the punishment norm function dic-
tates that she not enjoy a payoff higher than the one she would have received if she followed the
primary norm (i.e., her payoff at the most socially appropriate consequence).10 The EE principle
states that punishment should be proportional to ra, with the harshest punishment—reducing i’s
payoff to its minimum ui—being applied when the norm is violated to the fullest extent (ra = 2).
We propose the punishment norm function µi : R→ [−1, 1], which is a mapping from violator
i’s payoffs to the normative valence space shown on Figure 1.
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Figure 1: Punishment norms for ra < 2 (solid gray line), ra = 2 (dashed line), and ra → 0 (dotted
line).

Notice first that µi is defined for all payoffs on the interval [ui, ūia] from the lowest possible
payoff in the whole game to the maximum payoff that remains achievable after a. The prop-
erties of µi are as following. The payoff ūia, which constitutes i’s “criminal intent” (that is, the
payoff we assume was the aim of the norm violation) has the lowest possible normative va-

9Of course, in a game it is not obvious that player i can guarantee herself payoff ūia, since other players might
move in the subgame. However, we follow a long tradition, going at least back to Elster (1989) in assuming that
normative thinking, of which punishment is an example, is not strategic. In law practice, criminal intent is reason
enough for punishment regardless of the plausibility of achieving the intended outcome.

10In rare cases in which ūia ≤ uim, we assume the punishment norm implies that player i should still be punished
for norm violation by having even less than ūia.
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lence of −1 and all payoffs less than that have higher normative valence. Next, note that social
appropriateness reaches its maximum when the payoff drops to ra

2 ui+
(
1− ra

2

)
m. This value is

linearly proportional to ra and is equal to m when ra → 0 and to ui when ra = 2. This point is
calculated by applying the EE principle and represents the maximum appropriate punishment
proportional to ra taking into account the deterrence principle (which imposes the constraint that
the punishment should not be less than m). All payoffs less than m + ui−m

2 ra have the highest
normative valence of 1. This implies that for the punishers it is normatively irrelevant whether i
gets punished by having payoff m + ui−m

2 ra or lower.
Punishment can be implemented in two different ways. The first, which is perhaps the most

natural way, is to punish “outside the game.” This requires the existence of a separate punish-
ment mechanism that allows players to decrease each others’ payoffs without deviating from the
normatively appropriate actions defined by the game itself. This is exactly the idea that is widely used
today in experimental economics since Fehr and Gächter (2000), who introduced a punishment
technology to the repeated Public Goods game. Indeed, such a mechanism makes it possible
to achieve two normative goals that we assume agents have: they can reach the most socially
appropriate consequence remaining in the subgame after a was chosen, and they can separately
punish player i for the norm violation. If such a punishment mechanism exists, then the punish-
ment function is defined by σ + (1− σ)µi(p) for payoff p of player i. The parameter σ ∈ [0, 1]
represents the relative importance of punishment in a given situation. When σ = 1 all punish-
ment options are equally (and maximally) socially appropriate; thus, the least costly punishment
will be chosen. When σ = 0, the players feel that punishment is most important. We discuss
punishment mechanisms in much more detail in Appendix E.

The second way to implement punishment is by taking retaliatory action within the game
itself (e.g., when an outside-the-game punishment mechanism is not available). This leads to
an additional complication in standard games, which do not assume punishment mechanisms:
players are forced to combine the main normative goal of the game and punishment in one nor-
mative space. We assume that they combine these normative motivations by taking a convex
combination of the norms ηC and µi, thereby, increasing the normative valence of the conse-
quences that decrease i’s payoff. Abusing notation, let us think of the function µi, originally de-
fined on the space of payoffs, as a function defined on consequences with µi(c) meaning µi(u(c))
and assume that for each c ∈ Ca the combined norm function is

η′(c) = σηC(c) + (1− σ)µi(c).

Here, again, the parameter σ defines the relative importance of punishment. To illustrate how
this amalgamation of norms works we analyze the Ultimatum game in Example 5 in Appendix

13



A. The intuition is that normatively inappropriate offers by the proposer can “justify” (in the
sense of our theory of norms) retaliatory rejection by responders.11

2.3 Games with Norm-Dependent Utility

In this section we put all the elements of our model together and analyze how extensive and
normal form games with norm-dependent utility are played. Since most games in the experi-
ments that we consider in the next section are rather simple, we restrict the exposition in this
section to normal form games and perfect information extensive form games with two moves.
The formulation for general games with observable actions can be found in Appendix E.

We start by defining a utility function that takes normative valences as an input. Up to this
point our model was purely normative, in the sense that it only described how appropriate or
inappropriate the consequences of actions can be. However, we never talked about the actual
goals of the players. The last, very important, ingredient that is still missing is the consumption
utility that players enjoy from receiving their payoffs. We follow previous studies (Kessler and
Leider, 2012; Krupka and Weber, 2013; Kimbrough and Vostroknutov, 2016) and define player
i’s norm-dependent utility of consequence c as

wi(c) := ui(c) + φiη(c),

where ui(c) is the utility of consequence c as defined above, with the set of consequences cor-
responding to the set of terminal nodes in the game. η(c) is the normative valence of c in the
game node directly leading to c (pre-terminal node) if no separate punishment mechanism is
available.12 When there exists a punishment mechanism, η(c) is the same as ηC(c), the norm
function defined by all consequences in the game (see Appendix E). φi ≥ 0 is a constant that de-
fines player i’s norm-following propensity (Kimbrough and Vostroknutov, 2016, 2018). This last
parameter defines how important following norms is for player i: if φi = 0 we have a standard
utility maximizer, as φ→ ∞ we have player i who only cares about following norms.13

11It should be mentioned that Smith (1759) also considered gratitude (the opposite of resentment) as an important
force that drives human behavior. We can define gratitude similarly to resentment by considering the set of the
socially worst consequences M′ = argminc∈C ηC(c) and calculating gratitude for action a with Ca ∩M′ = ∅ as ga :=
minc∈Ca ηC(c)−minc∈C ηC(c), or the degree to which action a of player i helped to avoid the worst consequence.
The normative reward can be defined using utilities u′im = minc∈M′ ui(c), the payoff that player i risked receiving
by not choosing a; u′i = maxc∈C ui(c), the reference point for highest reward; and ū′ia = minc∈Ca ui(c), the minimal
utility that player i can still get due to his action. The reward can be incorporated into the model through a separate
reward mechanism or by combining norms inside the game. We do not consider gratitude further for simplicity,
but leave it for future experimental research to determine how relatively important gratitude and resentment are.

12As the game unfolds, the norm function can change when an action is taken that merits punishment, so η can
be different from the norm function that existed in the beginning of the game. See Appendix E for details.

13We think of φi as a personal characteristic of a player, which is private information. In simple analysis φi might
be assumed to be common knowledge, but in principle all games should be modeled as those with incomplete
information about φi. It is also reasonable to consider the possibility that φi is a function of own commitment to
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We start with one-shot normal form games. In any such game the set of consequences is
the set of outcomes of the game with the payoffs being the consumption utilities defined by
the function u. To account for norms we merely need to redefine the game using the norm-
dependent utility w instead, and then we can analyze it with standard tools. To illustrate the
concept, we analyze the Prisoner’s Dilemma in Example 6 in Appendix A.

Next, we analyze extensive form games with two moves and perfect information. Consider a
game defined by the environment 〈N, C, u, D〉 and the observable actions of two players, 1 and
2. First, player 1 chooses an action a1 ∈ A1, and then player 2 chooses an action a2 ∈ A2(a1).
Here the set of actions of player 2 depends on the choice of player 1. After the move of player 2
the game ends, and a consequence ca1a2 is realized. To understand how the game is played we
start with the norm function ηC defined for the tuple 〈N, C, u, D〉. This function describes the
appropriateness of each consequence at history {∅}, before the game begins.

Next we define the norm function ηa1 after player 1 chooses action a1. Let Ca1 ⊆ C denote
the set of consequences reachable after a1 and M = argmaxc∈C η(c) the set of consequences
with the highest appropriateness. For all a1 such that Ca1 ∩ M 6= ∅ or such that game ends
after a1 set ηa1 = ηC (restricted to consequences Ca1). When player 1 chooses an action, which
is consistent with eventually achieving some consequence that has the highest appropriateness,
the norm function remains unchanged, since this action does not constitute a norm violation (as
defined in Section 2.2). Similarly, if the game ends after a1, there is no need to update the norm
function since no punishment is possible. When Ca1 ∩M = ∅ and player 2 has to move, player
1 has violated the norm and the punishment norm is activated. Thus, the norm function for the
remaining consequences Ca1 is updated to

ηa1(c) = σηC(c) + (1− σ)µ1(c|a1) for c ∈ Ca1 ,

as defined in Section 2.2. Here notation µ1(c|a1) means the punishment norm function that is
calculated for the consequences Ca1 . Norms ηa1 are defined on the pre-terminal nodes of the
game. Thus, the utility that player i maximizes is given by

wi(c) = ui(c) + φiηa1(c)(c) ∀c ∈ C.

Here a1(c) is the action of player 1 that leads to consequence c. With the utilities thus redefined
one can use any standard game theoretic concept to determine an equilibrium.

following norms and one’s empirical beliefs about others’ respect for norms à la Bicchieri (2006), but for simplicity
we do not do so here.
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3 Evidence

In this section we take the model to data and show how it can be used to interpret behavior
observed in a variety of experimental studies. First, we show how our model can account for
the observation that measured social preferences vary with the task by which they are elicited.
Second, we analyze experiments in which a game is expanded or contracted (by adding or re-
moving consequences) and examine how our model accommodates the resulting changes in be-
havior. Third, we examine the model’s implications regarding the actions that constitute norm
violations, how these actions ought to be the target of punishment in dynamic interactions, and
how severely they ought to be punished. We chose these settings because each of them allows
us to illustrate a simple comparative static implication of the theory. Many experimental studies
of social interaction are designed in a way that makes interpretation via our model complicated.
This is because (under the model) behavior is always influenced by both selfishness and norm-
following, and because in many experimental designs, several normative aspects change at once
between treatments. For clarity and simplicity, we highlight a set of experiments that change
only one normative characteristic of the environment at a time, keeping everything else con-
stant, and which generate comparative static predictions that we can assess with the data.

3.1 Choice-Set-Dependent Social Preferences

In this section we look at a set of experiments from the literature on social preferences, in which
subjects make choices among two or three allocations for themselves and others. One of the
most well-known papers in this category is Engelmann and Strobel (2004).

Case 1. Engelmann and Strobel (2004). In this experiment subjects choose among allocations
for themselves and two other people in multiple tasks (between-subjects). We focus on a subset
of these tasks, in which allocations are similar in terms of most payoffs, and we also present
data from a replication by Baader and Vostroknutov (2017). Table 1 shows the tasks with three
allocations each. The subjects in the role of Person 2 decide which allocation in {A, B, C} to
implement. Notice that tasks 1, 2, 3 are the same except for the payoffs for Person 2, and similarly
are tasks 4, 5. The last two rows show the percentages of subjects who chose each allocation in
the two studies. Qualitatively they are very similar.

For each task we calculate two norm functions: the standard one that treats monetary payoffs
as utilities (linear utility) and the norm function with log utility. The reason to consider log utility
is that the payoff differences in the allocations are rather extreme, Person 3 never gets more than
5 points, while Person 1 gets no less than 10. This can lead to large differences in norm functions
between linear and log utility cases (see Appendix C for discussion). Figure 2 presents the norm
functions for the five tasks.
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Task 1 2 3 4 5

Allocation A B C A B C A B C A B C A B C

Person 1 16 13 10 16 13 10 16 13 10 21 17 13 21 17 13
Person 2 8 8 8 9 8 7 7 8 9 9 9 9 12 12 12
Person 3 5 3 1 5 3 1 5 3 1 3 4 5 3 4 5

Choices, %
ES2004 70 27 3 83 13 3 77 13 10 40 23 37 40 17 43
BV2017 89 8 3 95 4 1 58 14 28 39 14 47 33 14 53

Table 1: Three-person Dictator games that were used in ES and BV.
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Figure 2: Normative values in linear and log utility models.

Consider first tasks 1-3. Here the payoffs of Persons 1 and 3 decrease from allocation A to C,
which is reflected in their appropriateness. Allocation A is the most appropriate in both linear
and log utility models. This is consistent with the subjects’ choices: allocation A is preferred by
the majority. This is even true for task 3 where Person 2, the decision maker, receives the highest
payoff in allocation C. Thus, in tasks 1-3 the norms prescribe the choice of the most efficient
allocation, and this is indeed what subjects prefer.

In tasks 4 and 5 the situation is very different, now the payoffs of Person 3 grow in opposite
direction of the payoffs of Person 1 creating a conflict between efficiency and maximin pref-
erences. This is reflected in the two norm functions: while the linear utility model prescribes
the choice of the most efficient allocation, the log utility model instead prescribes the maximin
choice. We would like to emphasize at this point that we do not intend to suggest that only one
of the two utility models is “correct.” Rather, we see them as two ways of thinking about appro-
priateness of a given situation. One way of thinking considers only payoff differences and, thus,
concludes that the efficient allocation is the most appropriate. The other takes into consideration
the payoff differences relative to wealth, as is captured by diminishing marginal utility in the log
utility model. This leads to higher weights on the dissatisfaction of “poor” Person 3 and, as a
result, to the maximin choice being labeled most appropriate. Both ways of thinking may be re-
flected in subjects’ behavior: roughly half choose the efficient allocation, with the other (roughly)
half choosing the maximin. Interestingly, Baader and Vostroknutov (2017) found that students
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who chose to study economics and related subjects are more likely to maximize efficiency, while
students in fields like European Studies and Arts and Culture prefer maximin. �

This case illustrates how the set of payoffs impacts normative valences, but also how the
normative evaluation depends on how one values the payoffs. The potential for disagreement
about norms stemming from different assessments of dissatisfaction (i.e., from different prefer-
ences over outcomes) merits further research. Next, we turn to a recent study by Galeotti et al.
(2018) which analyzes the efficiency-equality trade-off in bargaining situations.

Case 2. Galeotti et al. (2018). In the experiment subjects chat in pairs about choosing between
two or three allocations for themselves. Since there is no single decision maker and both subjects
must agree on a choice, there is reason to think that the influence of norms will be particularly
strong here, which should make the agreed-upon option more in line with social appropriate-
ness. That said, the subjects have two minutes to negotiate, and if they do not reach an agree-
ment, both get nothing. This feature can still lead to more aggressive subjects’ achieving the
consequence with higher material payoff for themselves.

Some of the tasks consist of allocations (x, x); (120, 40); (40, 120) where x ∈ {30, 40, 50, 60, 70, 80}.
Thus, one allocation gives equal number of points to the negotiators and the other two give un-
equal numbers, but with the property that the unequal allocations are (weakly) more payoff
efficient than the equal one. Figure 3 shows the difference in percentages of equal and unequal
choices (solid line). We see that when x is small subjects choose unequal, but efficient, alloca-
tions. When x is large enough the modal choice switches to the equal allocation, at some cost to
efficiency.
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Figure 3: Solid line represents the data from Galeotti et al. (2018). Dashed lines show the pre-
dictions implied by norm functions computed under both the linear and the log utility models
(grey and black lines respectively).

To compare the predictions of our model with these data, we again compute two variants of
overall dissatisfaction for each allocation: with linear and log utilities over payoffs. The dashed
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black line on Figure 3 shows the differences in dissatisfactions between the equal and unequal
allocations under the log utility model (the scale on the y-axis is arbitrary but the zero is set at
the same level as zero for the differences in percentages). For the positive differences the model
predicts that the equal allocation is the most appropriate and for negative differences that the
unequal allocation is the most appropriate. We see that this prediction is in line with the choice
of the majority of subjects (except for x = 50). The grey dashed line shows the differences in
dissatisfactions computed under the linear utility model. In this case, linear utility does worse
than log utility in accounting for behavior. �

This case shows that our model can capture the efficiency-equality trade-off studied in Ga-
leotti et al. (2018). More importantly, the relative magnitudes of the dissatisfactions calculated
for equal and unequal allocations can predict whether subjects prefer equality or efficiency. In
particular, if the dissatisfactions are very similar, as, for example, in case x = 50 on Figure 3, then
some pairs of subjects will converge to choosing equality and some efficiency. It is not surprising
that when the normative valences of the two outcomes are very close to each other, choices are
more variable. This case also demonstrates that our model, unlike standard social utility speci-
fications, can be easily applied to unstructured bargaining environments where there is no one
person who decides but where all players must come to a mutual agreement about the choice.

3.2 Expanding and Contracting the Set of Consequences

In this section we consider a set of studies in which the experimental manipulation adds or
removes some consequences. In our model, this changes the normative valences of the conse-
quences that are present in both cases, and thus can change the behavior.

We start with the give and take DGs analyzed by Bardsley (2008), List (2007), and Cappelen
et al. (2013), among others. In these studies it has been shown that subjects’ generosity in the DG
decreases when an additional action is added to an otherwise standard dictator game, allowing
the dictator to take some money from the recipient. Since we do not observe the distributions of
φi in the give-take experiments we assume that it is the same for all treatments of a given study,
and we check whether the changes in norms between treatments are qualitatively reflected in
the behavior.

Case 3. List (2007). In the Baseline treatment of List (2007) all dictators have $5 and choose
how much of it to give to the recipient. The Take1 treatment is the same except there is an
additional possibility to take up to $1 from the recipient (all subjects have endowments, such
that recipients still receive a positive payoff, even when the dictator takes). The same goes for
the Take5 treatment (can take up to $5).
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Figure 4: Relative norms in the three treatments of List (2007).

The graph on Figure 4 shows the relative norm functions in the Baseline, Take1, and Take5
treatments.14 In all three cases, the overall dissatisfactions are calculated in the same way as for
the standard DG (see Example 2). As we have proved in Proposition 2, the most socially appro-
priate consequence in a constant-sum, two-player game is the one that lies in the middle of the
interval of monetary amounts that can be taken or given (when all consequences are equidis-
tant). Thus, our model predicts that the most socially appropriate consequence involves less
and less generosity as we move from Baseline to Take1 and to Take5. This is what List (2007)
reports (see Figure 18 in Appendix G.1): in the Baseline treatment there is a spike at $2.5 and
in the Take5 treatment a spike at $0 as predicted by our model. In the Take1 treatment, offers
are less generous than in the Baseline treatment, however, there is no clear spike at $2. Notice
also that here, as compared to the previous section, the selfish motive of the dictator is given
free reign, and thus many subjects choose to maximize their own payoff. As Kimbrough and
Vostroknutov (2016, 2018) explain, this can be attributed to heterogeneity in the rule-following
propensity: some subjects suffer high disutility from breaking norms (large coefficient φi in the
utility, see Section 2.3), and some do not (low φi). �

Additional experiments with restricted giving options are needed to test the implications of
our model for norms in Dictator games more thoroughly. Cox et al. (2018) report DG experiments
with restricted giving options, along these lines. In most of their treatments the average offers
are very close to our predictions, namely, the middle of the interval of possible consequences.
Unfortunately we cannot say more since no other statistics are reported.

In the rest of this section we analyze extensive form two-moves games in which some conse-
quences are removed. It is instructive to compare our theory with models of reciprocal kindness
that attempt to explain behavior in dynamic games (Rabin, 1993; Charness and Rabin, 2002;

14We renormalize the overall dissatisfactions in order for them to be comparable. Appendix D defines relative
norm functions and explains how renormalization is done.
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Dufwenberg and Kirchsteiger, 2004; Falk and Fischbacher, 2006); in doing so, we first relate our
model to the conceptual discussion in Isoni and Sugden (2018) that highlights some philosophi-
cal difficulties that arise in reciprocity models of this kind.

Case 4. Isoni and Sugden (2018). In this paper the authors (IS) do not report any experiment,
but rather analyze a simple two-move game shown in Figure 5. IS consider an ideal Trust World
in which Player 1 chooses send and Player 2 chooses return, both with probability 1, while at
the same time Player 2 chooses equal with probability less than 1 in the restriction of this game
without the move of Player 1 (the game on the right). According to IS the idea of trust and trust-
worthiness is that in the game on the left Player 2 chooses return with higher probability than
she is choosing equal in the game on the right exactly because Player 2 enters a trust relationship
with Player 1 when he chooses send.

Figure 5: Left: the Trust game considered in Isoni and Sugden (2018). Right: the Dictator game
faced by the second player in the absence of the move of the first player.

IS note that the models of reciprocal kindness by Rabin (1993), Charness and Rabin (2002),
and Falk and Fischbacher (2006) do not support the above strategies as an equilibrium, while
the model by Dufwenberg and Kirchsteiger (2004) does support it but fails to do so in other
similar games. They call this the Paradox of Trust. The reason for the inability of these models to
account for trust in this basic game lies in the way reciprocity is modeled: players are assumed to
respond with kindness to kindness of other players, however, the action send does not classify as
either kind or unkind since Player 1 chooses it expecting that Player 2 chooses return. IS conclude
that trust behavior in this game cannot be based on reciprocal kindness, which presumes some
reaction of Player 2 to some intentions of Player 1, and that this type of trust should instead be
thought of as a “joint action” of the players who are involved in “reciprocal cooperation” (Isoni
and Sugden, 2018).

Our theory of norms works exactly as IS suggest. The consequence (1, 1) in the game on the
left is the most appropriate, so the players who care enough about following norms do choose
send and return in a “joint enterprise,” which is to behave in the socially appropriate way. In
the Dictator game on the right the two actions of Player 2 have the same normative valences,
so, according to the norm-dependent utility, she chooses the selfish option unequal, exactly as IS
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hypothesize. Thus, our theory resolves the Paradox of Trust that is inherent in the models of
reciprocal kindness and shows that trust can be based on social norms, which create reciprocal
behavior (see Kimbrough and Vostroknutov (2019) for more discussion). �

Next, we analyze experimental findings of McCabe et al. (2003) that are consistent with the
ideas of Isoni and Sugden (2018). This is the simplest extensive form game that allows us to test
our model, since in the Trust game used by McCabe et al. (2003) the most appropriate action lies
in the subgame, and thus the second mover should not punish the first for violating the norm.
This feature makes it possible to look exclusively at the behavioral changes brought about by the
removal of one consequence.

Case 5. McCabe et al. (2003). The authors (MRS) consider a simple trust game and its subgame
played in separate treatments between-subjects (on the left of Figure 6).
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Figure 6: Left: the Trust and Dictator games analyzed in McCabe et al. (2003). Right: the norma-
tive valences of the consequences in the two games (log utility, relative norms). For the linear
utility norms see Figure 19 in Appendix G.2.

MRS notice that the behavior of P2s depends on whether P1 moved first or not. Specifically,
after the move of P1, 65% of P2s choose the cooperative consequence (25, 25), while without this
move 67% of P2s choose the selfish option (15, 30). MRS explain this treatment difference with
the idea that P2s want to reciprocate the trustful move of P1 and thus choose the cooperative
option (25, 25); while, without this move of P1 there is nothing to reciprocate, so more P2s choose
selfishly.

According to our theory, this change in behavior follows from the different normative va-
lences of consequences in the full Trust game and the associated Dictator game. The graph on
the right of Figure 6 shows the norm functions calculated with log utility and renormalized rel-
ative to each other (see Appendix D). The results are qualitatively the same with linear utility
(see Figure 19 in Appendix G.2). The normative valence of the consequence (15, 30) is very low
in the Trust game, but is around 0 in the Dictator game. Thus, the material payoffs for P2 are
the same in the two games, but the difference in normative valences between the cooperative
and selfish actions decreases in the Dictator game. Therefore, according to the norm-dependent
utility, subjects with intermediate propensity to follow norms should switch from choosing co-
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operative action in the Trust game to selfish action in the Dictator game, exactly what the data
suggest. �

In the case above, second movers choose to cooperate in the Trust game (consequence (25, 25))
because the existence of a forgone option (consequence (20, 20)) makes the appropriateness of
the selfish option (15, 30) much lower, so norm-following individuals avoid it. This shows how
behavior in extensive form games can change due to expanding or contracting the set of possible
outcomes.

3.3 Punishment

In this section we test our theory of punishment for norm violations. We show that the model
can account for behavior in games where the first mover does not choose the most appropriate
consequence, and the model predicts that this behavior should be punished. We compare the
model’s predictions to the experiments of Charness and Rabin (2002) who study several games
that allow for the possibility of punishment by the second-mover. Then we consider third-party
punishment games due to Fehr and Fischbacher (2004) who employ a formal outside-the-game
punishment mechanism and show that punishment decisions are consistent with those implied
by the model.

Case 6. Charness and Rabin (2002). The authors (CR) study the games shown in Figure 7 that
neatly illustrate how punishment works in our model when there is no external punishment
mechanism. The games A1 and A2 are identical except for the payoffs that the players get if P1
ends the game with the first move ((750, 0) vs. (550, 550)). The same is true for the games B1
and B2. The A and the B games also differ in that, in the A games, P2 has a material incentive to
choose (400, 400); whereas, in the B games, P2 is materially indifferent between the two options.
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Figure 7: The games analyzed in Charness and Rabin (2002). In this study A1 is coded Berk21;
A2 is combined Barc1 and Berk13; B1 is Barc7; and B2 is Barc5.

From the perspective of our theory, assuming log utility of money, games A1/B1 are very dif-
ferent from games A2/B2 because (550, 550) is the most appropriate payoff in the latter, whereas
(750, 0) is the least appropriate payoff in the former (again renormalizing to allow comparison).
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Thus, in the A2/B2 games P2 should punish P1 for not choosing the most appropriate conse-
quence, but in A1/B1 no norm is violated when P1 continues the game and so no punishment is
expected.15

When P1 chooses to pass the decision to P2 in A2/B2, P2 resents P1 for doing so, and the
punishment norm is activated. This changes the normative evaluation of the remaining actions,
such that it becomes appropriate for P2 to minimize P1’s payoff by choosing (400, 400). To
the extent that subjects care about following the norm, they should be more likely to choose this
allocation in A2/B2 than in A1/B1. This is exactly what CR report: in the A games the proportion
of P2s who choose (400, 400) increases from 61% to 89%, and in the B games from 6% to 33%.
Notice that overall more P2s in the A games choose (400, 400) than in the B games because of the
material incentive to gain 25 points, which is absent in the B games. Moreover, the consequences
(750, 375) and (750, 400) in the A and B games respectively have higher appropriateness than the
consequence (400, 400), which is consistent with the observation that a non-negligible number
of subjects choose these options. �

Case 6 shows that our model can account for the comparative statics of punishment rates in
simple extensive form games. In second- and third-party punishment games with an external
punishment mechanism, we can test our theory of punishment more directly. In the norm-
dependent preferences framework, third-party punishment is not a particularly surprising phe-
nomenon. Since punishment of norm violators is also a norm, anyone with high enough propen-
sity to follow norms, including third parties, should be willing to pay to punish a violator. The
fact that many studies report costly punishment by third parties supports this idea (Fehr and
Fischbacher, 2004; Leibbrandt and López-Pérez, 2012; Balafoutas et al., 2014; Nikiforakis and
Mitchell, 2014). We analyze the seminal study by Fehr and Fischbacher (2004).

Case 7. Fehr and Fischbacher (2004). In the experiment by FF, subjects play the standard DG.
However, after the game, third and second parties can punish the dictator, paying 1 unit of
personal cost to impose 3 units of cost on the dictator. Subjects choose punishment levels via the
strategy method for all possible offers that could be made by the dictator.

Figure 8 shows the observed levels of punishment by third and second parties alongside the
predictions of our model when costs of punishment are negligible and rule-following propen-
sity is very high. Thus, the dashed line plots the upper bound on the amount of punishment
that our theory predicts. In accordance with what we called an Eye for an Eye (EE) principle,
the amount of punishment observed in the experiment grows with the distance from the equal
split, whenever the dictator gives less than half of the pie to the recipient. Moreover, negligible
punishment observed in the cases in which the dictator gives more than half of the pie is also

15The changes in the normative valences of the consequences (400, 400) and (750, 375/400) due to the change in
the third consequence ((750, 0) vs. (550, 550)) are minimal and do not play much role in our reasoning.

24



33

Second party punishment
Third party punishment
The harshest punishment (theory)

25

20

15

10

5

0

10 20 30 40 50 60 70 80 90 100

E
xp

en
di

tu
re

s 
to

 s
an

ct
io

n 
di

ct
at

or
s

Dictator's transfer to recipient
0

Figure 8: Third and second party punishment in the DG reported in FF. The dashed line shows
the model predictions of the harshest possible punishment meted by the extreme norm-followers
with very little costs of punishment.

consistent with EE, since maximum punishment only involves reducing the violator’s payoff to
the level of her minimum possible payoff in the game, which is zero in the DG.

The data are also consistent with our deterrence principle: they show that the average pun-
ishment strategy reported by subjects makes it unprofitable to give less than half to the recipient
(Figure 6 in FF). Our model predicts a strikingly similar pattern of punishment. The fact that
the observed punishment is less than the harshest punishment predicted in our model is not
surprising, since not all subjects have high propensity to follow norms: φi also influences the
willingness to punish norm violations. Thus, subjects with low/intermediate φi may prefer to
avoid the costs of punishment because they value money.16

Finally, in Case 12 in Appendix B we analyze the third party punishment behavior in Pris-
oner’s Dilemma reported by Fehr and Fischbacher (2004). Our model suggests an explanation of
the puzzling observation that subjects punish defectors less after outcome (Defect, Defect) than
after outcome (Defect, Cooperate). �

4 Norms in Context

In this section, we show how our model can be generalized to account for a number of fun-
damental features of human social life, including respect for ownership claims and role enti-

16It is also possible that norms of punishment specify less-than-complete retribution as captured by the parameter
σ in our model.
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tlements, expression of in- and out-group distinctions, deference to social status, and kin fa-
voritism. These are human universals, present to varying degrees in all societies, and thus we
take them as axiomatic and merely show how they might be accounted for within the structure
of our model of injunctive norms. We do so by altering the way we handle aggregation in the
model. Notice that in the definitions in Section 2 all players and their payoffs are treated equally
in aggregation. This represents a “baseline” model of norms in interactions between symmetric,
co-equal agents. As noted in the introduction, the baseline model neatly captures the situation
in typical lab experiments, in which all subjects belong to the same group of people (students),
have indistinguishable social status (because of anonymity), lack role entitlements and owner-
ship claims, and make decisions regarding the allocation of windfall resources provided by the
experimenter. We show what happens in the model when we break this symmetry in several
different ways.

4.1 Ownership Claims

The endowment effect (Thaler, 1980) shows how the perception and valuation of an object can
change when some form of ownership over it is established. Ownership claims also influence
the sharing rate in social dilemmas (e.g., Gächter and Riedl, 2005; List, 2007; Oxoby and Sprag-
gon, 2008). When subjects believe that they own the resources that they are asked to share, they
tend to be more selfish than when the resource is unowned (or owned by someone else). We con-
jecture that ownership claims are reflected in social norms. This sounds intuitively plausible, as
situations in which people refuse to give away things that they own do not seem inappropriate.
In what follows, we make a distinction between ownership claims, which refer to some resources
being owned by an individual, and role entitlements (discussed in Section 4.2 below) which refer
to a person’s entitlement to some position and an associated set of actions (e.g., with respect to
the allocation of some unowned resources).

We model ownership claims by assuming that possible (re)allocations of owned resources
trigger dissatisfaction differently from the windfall payoffs that are typical in experiments. We
assume that the utility of owned money is the same as the utility of unowned money. What
changes is the intensity of feelings of dissatisfaction related to losing the money of the former
type. To capture this in the model, we assume that each amount of money that a player might
receive is divided into several pieces, which differ in their degree of ownership by the players.
Mathematically, we redefine the utility function from the previous section to be u : C → RNP,
where P is a finite set of separate ownership classes (in Section 2 P consisted of one element).
Thus, player i derives utility uip(c) from the ownership class p in consequence c ∈ C. Finally,
let πip ∈ [0, 1] denote the ownership weight that is assigned to player i in class p; this is intended
to capture the strength of player i’s ownership claim over the resources in p. For each class, the
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weights determine the distribution of ownership of the resources in it. In general, we require
that if p is an ownership class, then ∑i∈N πip = 1.

For example, suppose that player i “completely” owns the resources in class p. Then πip = 1
and πjp = 0 for all other players j 6= i. Player i might also have a weaker ownership claim. In
this case we can have πip = 0.8, πkp = 0.2, and πjp = 0 for all j 6= i, k. Here players i and k own
the resources together, but have different “shares,” like partners in a firm. We retain windfall
payoffs as the special case p′ in which ∀i,j∈N πip′ = πjp′ .

To introduce ownership claims to the definition of a norm function we update the dissatis-
faction formula above to

di(c1, c) := max{∑
p∈P

πip(uip(c)− uip(c1)), 0}. (4)

To calculate the dissatisfaction for c1 because of c we first sum up the utility differences weighted
by the ownership weights in all classes. Notice that we do not require that only positive differ-
ences count in each class, but that negative differences can counterbalance positive ones. This
seems reasonable since, in the end, we are talking about a single set of resources, even though
different pieces of it have different associated ownership claims. This formulation allows for in-
teresting cases in which a player has some fixed amount of money in each of two consequences,
but the ownership claim over this money changes. In this case she will be dissatisfied with the
consequence in which her ownership is decreased.

This is the only modification we need in order to incorporate ownership claims. The rest of
the definitions stay unchanged. We proceed with some examples that demonstrate how owner-
ship of resources can change norm functions in allocation decisions and social dilemmas.

Example 3. DG with Ownership Claim. Suppose a dictator p is asked to share his own hard-
earned money with a stranger r. To analyze this situation, we extend the analysis in Example
2 by introducing one ownership class with πp = 1 and πr = 0 (we drop the subscript for
the class since there is only one). Notice that here we do not have in mind an experiment à la
Hoffman et al. (1994), where the right to be a dictator is earned through a contest—this possibility
is considered in Section 4.2 below—but rather a situation in which subjects bring their own
money to the lab and are asked to use it in a dictator game. The overall dissatisfaction in this
case is

D(c) = Dp(c) + Dr(c) =
c2

2
+ 0.

Thus, when the dictator owns the entire pie, the most socially appropriate consequence is to
give the receiver nothing. In general, for arbitrary πp and πr with πp + πr = 1, the most socially
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appropriate consequence is c∗ = 1− πp = πr; the dictator ought to give the receiver whatever
share of the pie she owns. �

We illustrate how this works via a set of experiments that manipulate ownership claims.
Cherry et al. (2002), Oxoby and Spraggon (2008), and Korenok et al. (2017) study Dictator games
where dictators or recipients earn money by answering questions from the GMAT, thus inducing
an ownership claim. The results in these studies are similar, so we focus on the most comprehen-
sive one. It should be mentioned that we do not have a theory about how exactly the ownership
claims are established. We simply assume that having put sufficient effort into earning money
creates a feeling of ownership.17

Case 8. Oxoby and Spraggon (2008). In the treatments DE and RE of Oxoby and Spraggon
(2008) only dictators or only recipients earn money that are later divided between the two play-
ers by the dictator. In the Baseline treatment the money is assigned randomly by the exper-
imenters. Subjects can earn $10, $20, or $40 depending on how many GMAT questions they
answer correctly (0-8, 9-14, or 15-20 questions). Thus, earning $20 or $40 signals effort and cre-
ates an ownership claim.
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Figure 9: Left: relative norm functions in the three treatments of Oxoby and Spraggon (2008):
Recipient Earnings (RE), Baseline, and Dictator Earnings (DE). Right: cumulative distributions
of offers in these treatments.

We model this situation by assigning an ownership claim weight 1 to the payoff of the dictator
or the recipient. In the Baseline treatment we assume windfall payoffs with weights 1

2 . The left
graph on Figure 9 shows the resulting norm functions. When the dictator earned the money
it is most appropriate to give nothing to the recipient; when the recipient earned the money it

17John Locke in his theory of natural law (Locke, 1690) states that individuals deserve property entitlements in
resources that they acquired through their own expenditure or labor. This coheres with many peoples’ intuition and
may explain the attractiveness (to some) of the labor theory of value. Nevertheless, some evidence suggests that
not just any effort is sufficient to create a strong sense of ownership: some studies that use tedious or menial tasks
that anyone can perform fail to detect any influence of earning one’s money in this way on behavior (e.g., Cappelen
et al., 2013). Thus, we propose that the reader always considers the possibility that in some experiments the tasks
designed to create feelings of ownership might have failed to do that.
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is most appropriate to give her everything; and in the Baseline treatment the money ought to
be divided equally. The right graph on Figure 9 shows the cumulative distributions of offers in
the three treatments for subjects who earned $40. Notice that in the DE treatment all dictators
keep all the money as predicted by the norm. In the RE treatment 63% of dictators offer more
than half of the money, which is remarkable in comparison with the Baseline treatment where
no one offers more than half. This clearly demonstrates the effect of the ownership claim of the
recipient. Similar results are obtained for the case when subjects earn $20 (Figure 20 in Appendix
G.3). �

Example 3 represents the simplest case because there is only one ownership class. However,
there are many important situations in which different people own various inputs to various
degrees (i.e., there are multiple ownership classes); in these cases, the intuition remains that
the appropriateness of giving someone a resource is increasing in their ownership claim. One
implication is that, under the model, one can use treatment variation to estimate (the strength
of) perceived ownership. Our next analysis is presented in Case 11 in Appendix B. We consider
again the experiment by List (2007) that we focused on in Case 3 above. In one of the treatments
(Earnings) both dictators and recipients put effort into earning their endowments, which makes
it different from Oxoby and Spraggon (2008) where only one subject earns it. We model this
situation with two ownership classes. The majority of subjects do not give any money to the
recipient and do not take any money from her either. This is consistent with our model if both
parties have a complete ownership claim to their endowments.

4.2 Role Entitlement

Role entitlements differ from ownership claims in that an individual with a role entitlement does
not necessarily own the money that her role entitles her to control. For example, a bureaucrat
may be empowered to distribute some public funds without having ownership over them. How-
ever, he has an authority to decide how the funds should be divided, and thus others without the
role entitlement have limited scope to disapprove of his decisions. In their famous experiments,
Hoffman and Spitzer (1985) and Hoffman et al. (1994) explicitly state that the right to a role in a
game implies “the guarantee . . . against reprisal” (Hoffman et al., 1994).18

The example of the bureaucrat highlights how we incorporate role entitlements; we assume
that such entitlements do not alter the dissatisfaction of the players with the various outcomes,
as was the case with ownership claims, but rather that role entitlements change the resentment

18It should be noted, however, that the terminology of Hoffman and Spitzer (1985) and Hoffman et al. (1994)
is somewhat different from ours. The authors of these studies, when talking about subjects’ earning the right to
be a proposer in the Ultimatum game, refer to “property rights” and the Lockean theory of desert. According to
them, becoming a proposer through a contest entitles a subject to ownership of the pie. In our model we draw a
distinction between earning the money by working on some task (ownership claim) and earning the right to be a
proposer (role entitlement).
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associated with norm violations. We thus propose that if a player is entitled to some role, then
he is resented less for taking socially inappropriate actions. Thus, role entitlements change the
intensity of punishment, which is expressed through a weight σ ∈ [0, 1] in Section 2.2. We extend
the model by assuming that role entitlements are associated with different weights for different
players. Player i with a role entitlement has parameter σi ∈ [0, 1], with σi = 1 meaning that i has
the strongest entitlement, and he should not be punished at all; σi = 0 means no entitlement and
the punishment should be full. Thus, when there exists an exogenous punishment mechanism,
this means that the punishment norm function is σi + (1 − σi)µi(c), a convex combination of
full appropriateness and the punishment norm function. When there is no separate punishment
mechanism, the norm function with punishment becomes η′(c) = σiηC(c) + (1− σi)µi(c) as in
Section 2.2.

Case 9. Hoffman et al. (1994). In the classic experiment by Hoffman et al. (1994) subjects play
the $10 UG with either random assignment of roles or role assignment determined by a contest
(general knowledge quiz, winner becomes the proposer). The authors observe that the mode
of the distribution of offers shifts from $5 in the random assignment treatment to $4 in the role
entitlement treatment (the difference is significant). The authors do not report the average offers,
but in a recent replication by Fleiß (2015) with the pie size of $20, the average offer significantly
decreases from 7.64 in the random assignment treatment to 6.48 in the role entitlement treatment.
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Figure 10: Norm functions in the UG with random role assignment and role entitlement.

In our model this shift in offers can be interpreted as an increase in the σp coefficient of the
proposer with role entitlement, which makes the weight on the punishment function smaller.
Figure 10 shows the norm functions with random role assignment (thin grey and red lines, σp =
1
2 ) and role entitlement (thick black and red lines, σp = 0.53).19 The appropriateness of accepting

19To clarify notation, check Example 5 in Appendix A that describes standard UG.
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relatively unequal offers goes up, and the appropriateness of rejecting goes down. In the vicinity
of half-half division, the role entitlement of the proposer makes the consequences, in which the
offer is accepted, more appropriate than those where it is rejected, as compared to the random
entitlement case where acceptance is always less appropriate than rejection. Thus, a strategic
proposer should offer less when entitled to the role due to the lower likelihood of rejection.

Under the model, the same offers should be rejected less often in the role entitlement treat-
ment. Hoffman et al. (1994) observe very few rejections in both treatments. This does not con-
tradict the model, but does not support it either. However, Fleiß (2015) observes a significant
drop in acceptance thresholds of receivers (using the strategy method) from 6.51 to 4.73 ($20
pie), which is in line with our model.20 �

4.3 Discrimination: Social Status, Kinship, and In- and Out-group

Discrimination, in the form of differential treatment of in- and out-group members, deference
to high social status individuals, and favoritism toward kin, is ubiquitous in human societies,
and these tendencies are well documented (e.g., Brown, 2000; Buss, 2005). As in the previous
sections, we take the existence of such distinctions as given and model them in our framework
by means of weights similar to those used to model ownership claims. The difference is that
in case of discrimination the dissatisfaction of individual players gets amplified or diminished
not because of its source (ownership), but because of who the players are. For example, the
dissatisfaction of a player with high social status has more weight than the same dissatisfaction
of a low status individual. For simplicity, such weights are assumed to be part of the “culture”
and to be commonly recognized by all players. This would imply, for example, that transferring
wealth to someone with relatively higher social status is considered appropriate. With the out-
group the situation is similar: the dissatisfaction of everyone who belongs to the out-group
is downgraded with a common weight, so acting selfishly with the out-group is considered
more appropriate than doing so with the in-group. With kin we assume that the dissatisfaction
of a related individual is weighted proportionally to the degree of relatedness (nuclear family,
extended family). This implies that selfish behavior is increasingly appropriate towards more
unrelated individuals.

Suppose the set of players N is partitioned into two groups N = {N1, N2}. Each player i has
a weight τi ∈ [0, 1] that defines her relative status among the players in her group, with higher
weight implying higher status. The dissatisfactions of the out-group players are discounted
with a weight ρk` ∈ [0, 1] where k is the index of the in-group and ` is the index of the out-

20It should be mentioned that at least one study failed to replicate the findings above (Demiral and Mollerstrom,
2018). We think that one reason for this could be the task that the authors used to induce role entitlement. Instead of
a general knowledge quiz, as in Hoffman et al. (1994) and Fleiß (2015), they used a number summation task. There
may be variation in the perceived legitimacy of a role entitlement; perhaps a task that “anyone can do” does not
induce strong perceptions of entitlement.
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group (k, ` ∈ {1, 2}). In principle, ρk` can be allowed to be negative; this would model outright
hostility towards the out-group. We then apply the weights when aggregating overall dissat-
isfaction across individuals to generate the norm function. However, we first define two norm
functions, one from the perspective of members of each group.21 The overall dissatisfaction from
the perspective of group N1 is

D(c1|N1) := ∑
i∈N1

τiDi(c1) + ρ12 ∑
i∈N2

τiDi(c1), (5)

and symmetrically from the perspective of group N2:

D(c1|N2) := ∑
i∈N2

τiDi(c1) + ρ21 ∑
i∈N1

τiDi(c1).

These definitions can be easily generalized to any number of groups with a complex system of
relationships defined by group-specific coefficients ρk`.

Finally, for each player j ∈ N we define kin relationships by means of weights κji ∈ [0, 1],
where i ∈ N indexes all other players. We assume that κjj = 1 for all j ∈ N (own dissatisfaction
is counted as the most important) and that κji are connected to the degree of relatedness. For
example, κji can be taken to be proportional to the weights defined by Hamilton’s law (Hamil-
ton, 1964), though genetically unrelated individuals like spouses and their kin can also have
relatively high weights. With kin relationships the norm functions become different for each
individual j. We define the general overall dissatisfaction of player j belonging to group N1 as

D(c1|N1, j) := ∑
i∈N1

(τi + κji)Di(c1) + ρ12 ∑
i∈N2

(τi + κji)Di(c1). (6)

Definition (6), which can also be easily generalized to any number of groups, incorporates all
“community relevant” information into the normative valence of each consequence. It should
be noted that we propose a very simple functional form τi + κji for the relative importance of kin-
ship and social status. Undoubtedly, other ways of combining weights are possible, but which
way is best is an empirical question.

Evidence on Status and Kinship. Under the model, the dissatisfactions of individuals with
higher social status should receive higher weights in the overall dissatisfaction function D. This
implies that in the same situation higher status individuals should enjoy higher payoffs than
those with lower status. The evidence of status deference is aplenty in anthropology, human
evolutionary biology, and evolutionary psychology (see e.g., Cummins, 2005). In the economics
literature Ball et al. (2001) find that high status subjects earn a disproportionate share of the gains

21The idea that norms are indexed to groups has been employed elsewhere; see Pickup et al. (2019) and Chang
et al. (2019), who suggest that those who share a particular group identity are aware of and adhere to norms asso-
ciated with that identity.

32



from exchange in experimental double auction markets that employ a box design, in which QD

= QS for a continuum of prices. Prices favor the high status side of the market, whether status
is thought to be “earned” through performance on a quiz or randomly assigned. Similarly, if
individuals weight the dissatisfaction of their kin according to their degree of relatedness, the
theory predicts that the appropriateness of kindness toward kin is increasing in relatedness.
Madsen et al. (2007) show that when subjects are told that their kin will be paid based on the
amount of time that the subjects spend performing a painful exercise known as a “wall squat,”
their willingness to tolerate pain is increasing in the closeness of the kin relationship (i.e., people
will suffer longer for a brother than a cousin). Both of these results can be interpreted as high
status individuals’ and kin’s dissatisfaction receiving higher weights.

Evidence on In- and Out-Group Discrimination. We analyze a study that employs the mini-
mal group paradigm from social psychology to induce in- and out-group identities (Tajfel and
Turner, 1986). This experiment is particularly useful for our purposes because it employs a
within-subject design which allows us to estimate the weights on in- vs. out-groups from an
allocation task and ask how well those weights (and the implied norms) predict play in a subse-
quent series of games.

Case 10. Chen and Li (2009). The authors (CL) use the classic Klee-Kandinsky method to assign
individuals to groups and strengthen their identification with those groups with some additional
tasks that include, for example, a chat with an in-group member about the characteristics of
the paintings. Then subjects choose how to allocate tokens between two other subjects (other-
other task) who either both belong to the in-group, both belong to the out-group, or one of each
(decision makers are not incentivized). Figure 11 shows the results.
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Figure 11: Choices in the other-other allocation tasks of Chen and Li (2009) with different com-
positions of others.

When subjects allocate tokens across two people from the same group (only in-group or only
out-group) they divide the tokens equally, as predicted by our model of the Dictator game with
equal weights on the dissatisfactions of the players. However, when one recipient is an in-group
member and the other is an out-group member, subjects favor the in-group at a ratio of 2:1 for
each of the five rounds with different endowments. This observation can be rationalized with a
weight on the out-group equal to ρ = 1

2 , which implies that subjects treat the dissatisfaction of
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in-group members as twice as important as those of the out-group. We can use this weight to
test the comparative statics of the theory using data from the second part of the experiment.

After this task subjects played in a sequence of 23 one- or two-moves games taken from
Charness and Rabin (2002). There are two conditions: in the first, both players are from the same
group (in-group) and in the second, the players are from different groups (out-group). Games,
choices, and norm functions are reported in Table 2 in Appendix G.4. The norm functions are
computed with the weight ρ = 1

2 that we estimated from the other-other tasks. To assess how
well our model can account for observed changes in choice proportions between the in- and
out-group games, we focus on second movers, since the first mover’s behavior depends on the
beliefs about what the second mover will do and on many unknown parameters. Second movers
always choose between Left and Right. We compute variables ∆Choice and ∆Norms (last two
columns of Table 2). The former is the difference in the proportion of choices of Left of players
B (second movers) between the out-group games and the in-group games. The latter is the
difference of differences between the out-group and in-group games of the norms associated
with choices Left and Right of player B.22 This quantity measures the change in norm-dependent
utility of the second mover and should be proportional to the change in choices of Left if our
model is correct.
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Figure 12: Change in choices and change in normative valences predicted by our model for the
23 games studied in Chen and Li (2009).

Our first observation is that in all games the change in choice has the same sign as the change
in normative valences. Thus, our theory can account for the direction of change in all games.
Moreover, if we assume a random utility specification as CL do, then the change in proportion of
choices should be proportional to the change in normative valences, since they enter the norm-
dependent utility. Figure 12 shows a scatter plot of the two variables. The dashed line is the

22Strictly speaking, there are 6 out of 23 games in which an action by the first mover will lead to different pun-
ishment functions for in- and out-group members. In what follows we ignore this when computing the change in
norm functions; if we simply exclude those games instead, our results for the remaining 17 games are essentially
identical.
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OLS regression with robust errors (β = 0.16, p < 0.001). Spearman’s rank correlation is 0.79
(p < 0.0001). This provides strong quantitative support to our theory. �

5 Conclusion

We propose the first (to our knowledge) theory of injunctive norms in games. The theory is
intended to provide structure to models of norm-dependent utility, which have been shown to
have substantial predictive/explanatory power in experimental games. This power has been
possible, in part, because theories of norm-following introduce additional free parameters mak-
ing it easier to fit the data. This has raised concern that such models provide too many “modeler
degrees of freedom,” and so we have sought to address this concern by showing how a measure
of normative appropriateness of each outcome can be defined only in terms of the set of possible
outcomes in a game.

The theory assumes that normative evaluations aggregate the emotional reaction of each
interested party to the possible outcomes. We assume that normative evaluations are driven
by comparative dissatisfaction when individuals evaluate counterfactual opportunities to earn
higher payoffs. The normatively most appropriate outcome is the one that minimizes aggregate
dissatisfaction of this kind. We take the theory to existing data to show how it can rational-
ize a variety of seemingly puzzling observations about social behavior, including the fact that
measured social preferences are known to vary across contexts, the fact that adding/subtracting
seemingly irrelevant outcomes to/from a game can change behavior, and the nature and inten-
sity of costly punishment.

An important virtue of the model is the ease with which it can be applied. Computing the
normative appropriateness of each outcome is straightforward, and then one need only use the
appropriateness measure as an input to norm-dependent preferences, and the resulting game
can be analyzed with standard tools.

While the evidence we present is largely consistent with the model, another key virtue of
the theory is that it establishes a falsifiable framework for studying the influence of norms on
behavior. Suitably designed experiments will thus be able to more thoroughly test the theory’s
implications and probe the boundaries of its applicability. We have little doubt that the present
model is incomplete, but we view it as a valuable step in the right direction.

Finally, while the theory makes predictions about a number of important ways that the con-
text in which a choice is made matters for behavior, the basic model is nevertheless unable to
account for a variety of other “context effects” that have been documented in the literature, such
as the effects of entitlements/ownership and the effects of individual and group status/identity
on behavior. In the final two sections we show how the model can be extended in a straightfor-
ward way to provide an account of such observations. The key intuition is that ownership, enti-
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tlements, and discriminatory treatment can all be understood as factors that change the weights
used in aggregation of dissatisfaction within or across individuals in constructing the norm func-
tion.

Of course, once we account for these factors, we once again introduce many parameters,
specifically weights π that determine ownership claims, punishment weights σ for the role enti-
tlements, and weights τ, ρ, κ for status, in/out-group, and kin relationships. If the model is taken
at face value, this means that experimental designs can be used to infer these weights from data
in order to help improve our understanding of normative variation. However, we also note that,
even if the model is “correct enough” to be used in this fashion, there would remain substantial
room for normative uncertainty and disagreement about what is appropriate, especially given
that entitlements and social relationships may not be precisely determined. We think this source
of normative uncertainty is a plausible source of conflict and that this is an important direction
for future research.
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Appendix (for online publication)

A Additional Examples
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Example 4. Adding the Same Consequences Matters. Suppose that there are two players, C = {c1, c2, c3},
and u(c1) = (0, 0), u(c2) = u(c3) = (1, 1). Thus, two consequences out of three lead to payoffs (1, 1), and
one to (0, 0). The overall dissatisfaction of c1 is D(c1) = 2 · 2 = 4: it produces dissatisfaction twice for
each player for being worse than (1, 1). Now suppose that C = {c1, ..., c101}, u(c1) = (0, 0), and all other
consequences lead to (1, 1). In this case the overall dissatisfaction of c1 is D(c1) = 2 · 100 = 200, since
now each player is dissatisfied with c1 because of 100 other consequences. Intuitively, a bad payoff vector,
(0, 0), feels much less appropriate if there are more other consequences that lead to a good one. To give an
example, suppose you are on a beach and you see someone drowning. In the first case you cannot swim
and do not have a phone, but can attract the attention of others (you need to run somewhere). In the sec-
ond case, you can swim and have a phone, and can attract the attention of others. Intuitively, not helping
the drowning person seems less appropriate in the latter case than in the former. Notice that, in order to
distinguish situations like this, all consequences should be taken into account like in our definition, and
not only those with special properties as in the case of maximal dissatisfaction suggested at the end of
Section 2.1.

If we apply our definition of a norm function to the cases with 3 and 101 consequences, we will actually
obtain the same result since the norm function is the normalized overall dissatisfaction. However, the two
cases are connected. In particular, the set of consequences of the first case is a subset of the consequences
of the second. We propose a way how to compare norm functions in related environments like these in
Appendix D. �
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Example 5. Ultimatum Game (UG) with punishment norm. From the perspective of our framework
UG can be viewed as a DG with a rather extreme punishment mechanism, which only allows to punish
a proposer to a maximal degree at the expense of all payoffs in the game.1 The set of consequences is
C = [0, 1] ∪ {pc | c ∈ [0, 1]} with utilities u(c) = (1− c, c) if the offer is accepted and u(pc) = (0, 0) for
all c ∈ [0, 1] if the offer is rejected. Here consequence pc represents rejection choice in the subgame that
follows the choice of c.
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Figure 13: Norm functions in UG. Left graph: the norm function for 〈N, C, u, R〉. Right graph: for each
c ∈ C, except c = 1

2 which is the norm, convex combination of punishment function and norm function.

The left graph on Figure 13 shows the norm function in the UG when considered as a whole. The black
line corresponds to the accepted divisions (1− c, c) and the red line stands for the rejection consequences
pc. The right graph shows for each choice c ∈ [0, 1] of a proposer the norm function from the left graph
combined with the punishment function µ which is defined, as described in Section 2.2, to be µ(c) = −1
(since the payoff 1− c for proposer is the highest attainable in the subgame following offer c) and µ(pc) =
1 for all c 6= 1

2 (since pc is the consequence with the lowest possible payoff for proposer). Notice that
for any deviation from equal split the normative valence of consequence pc is higher than the normative
valence of accepting the division (1− c, c). The difference increases for more unequal divisions. �

1The Ultimatum Game, first proposed by Güth et al. (1982), was intended as a model of bargaining with rejection
representing the “no agreement” option. Thus, it should not be surprising that when we see rejection through the
lens of norm-following behavior it seems rather uncalled for as a punishment strategy. In order to test our theory
properly an adequate punishment mechanism, which covers appropriate range of payoffs, should be introduced
instead (see e.g., Fehr and Fischbacher, 2004).
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Example 6. Prisoner’s Dilemma. Consider the Prisoner’s Dilemma with material payoffs a, b, c, d as
shown on the left graph of Figure 14. We calculate the normative valences associated with each outcome
as x = 2(a− c), y = 4(c− d) + 2(a− c), and z = 3(d− b) + 2(c− d) + (a− c).
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Figure 14: Prisoner’s Dilemma. Left graph: payoffs. Middle graph: normative valences; Right graph:
three types of PD that depend on the relationship between normative valences.

Suppose that the two players are extremely rule-following individuals, so that they just want to max-
imize social appropriateness. Then, the game they play is shown in the middle graph of Figure 14. De-
pending on the value of z, this game can be of three types: 1) coordination game; 2) dominance solvable
with unique NE in which both players cooperate or 3) a miscoordination game (right graph on Figure
14). For the PD of type 1 we obtain conditional cooperation behavior: norm abiding players cooperate only
if they believe that the other player will cooperate with high enough probability and they defect in the
opposite case. Since norm-followers can optimally choose defection or cooperation depending on their
beliefs, the observed actions in this kind of PD do not reveal the rule-following propensity of the player.
The PD of type 2 is the most clear case where the norm-following players should unambiguously choose
cooperation, which also reveals their type. Finally, in the PD of type 3 we may expect mixed strategies
and noisy behavior. Thus, our model makes some very specific predictions: cooperation should be the
easiest to attain in the type 2 PD, whereas cooperation and defection may coexist in the PD of type 1. �
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B Additional Cases

Case 11. List (2007). In Case 3 we analyzed the treatments of this experiment that introduced different
giving and taking options to the Dictator game. Here we look at the Take5 treatment and the Earnings
treatment, which is the same as Take5 with the only difference being that subjects earned the money that
they later were asked to share. In the Take5 treatment all subjects are endowed with $5. The randomly
assigned dictators can give some of their endowment to the recipient or take some part of the recipients’
endowment (up to full amount of $5). The Earnings treatment is the same as Take5 except subjects earn
their endowments by performing a tedious task (sorting and handling charity mail), which induces an
ownership claim.
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Figure 15: Relative norm functions in the Take5 and Earnings treatments of List (2007).

Figure 15 shows the relative norm functions in the Take5 and Earnings treatments. We model the
Earnings treatment by assuming that both dictators and recipients have ownership claims to the $5 that
they earned, with weights πd = πr = 1 (two ownership classes). As a result, both taking and giving
become much less appropriate than in the Take5 treatment with windfall resources. Notice also that
the most socially appropriate consequence is to give $0 in both treatments. This is reflected in behavior
(Figure 16 on the next page). In the Take5 treatment 30% of subjects choose to give $0 and around 40%
to take all money from the recipient. In the Earnings treatment the proportion of subjects who give $0
increases to almost 70%, while the proportion of subjects who take everything from the recipient drops to
20%. These findings are consistent with norm-dependent utility maximization under the norm functions
shown in Figure 15, if we assume heterogeneity in the rule-following parameter φi. Under the model, the
treatment effect arises because subjects with medium-low rule-following propensity switch from taking
everything in the Take5 treatment to the most socially appropriate option in the Earnings treatment, as
the difference between the normative valence of giving $0 and the valence of taking $5 is much higher
than in the Take5 treatment. �
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Fig. 3.—Treatment Take ($5) (data online table B3)

Fig. 4.—Treatment earnings (data online table B4)

Figure 16: Data from List (2007).
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Case 12. Prisoner’s Dilemma in Fehr and Fischbacher (2004). FF also analyze third party punishment
of participants in a Prisoner’s Dilemma (PD). They find that cooperation by both subjects is not punished
(expenditure of around 0.07, not significantly different from zero); defection by subjects paired with a co-
operator is punished the most (expenditure 3.35); and defection by subjects paired with another defector
are punished somewhat, but less extensively (expenditure 0.58). The application of our model to the PD
provided in Example 6 in Appendix A suggests that players who cooperate should never be punished,
since this choice is always consistent with trying to achieve the normatively best outcome. This is consis-
tent with the data. However, whether defection should be punished depends on the payoff parameters
of the PD and the players’ norm-following propensities: the model predicts that defection should always
be punished in a PD with parameters under which norm-dependent utility transforms the game into one
with a unique cooperative Nash equilibrium; under such conditions, defection is a clear norm violation.
However, when norm-dependent utility merely transforms the PD into a coordination game, it can be ap-
propriate for even a norm-follower to defect if they believe that others will defect too. So, in this case the
justification of punishment becomes less clear. Given this uncertainty about the game, third party punish-
ers may interpret defection in the outcome cooperate-defect as a signal that the defector is violating the
norm (which implies high punishment), but defection in the outcome defect-defect as a possible strategic
play of two norm-followers (less punishment). Thus, our model also helps to organize the observations
from FF that are hard to interpret with other models. �
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C Maximin Preferences
As we show in Section 2.1 our concept of normative valence incorporates both efficiency and equality
preferences. However, maximin preferences (choose an allocation with the maximal minimal payoff) are
known to have significant explanatory power in many contexts (Engelmann and Strobel, 2004; Baader
and Vostroknutov, 2017). In philosophical debates, maximin preferences (Rawls, 1971) are usually coun-
terposed to utilitarianism or maximization of efficiency (Bentham, 1781). However, as we show in this
section, the two principles do not have to be considered as different, but can be derived from the single
idea that normative appropriateness comes from dissatisfaction.

We propose that the source of differences between efficiency and maximin lies in calculations of dis-
satisfaction, or utility differences between consequences. Suppose that a player chooses between two
allocations for N players as in Example 1. In this example, we implicitly assume that the utility of money
is linear and is the same for all players in the game, or, in other words, u(x) = x, where x is a monetary
payoff in the game. When this is the case, the consequence with the highest efficiency (sum of payoffs) is
more appropriate than the less efficient one, and if the two consequences have the same efficiency then
their appropriateness is also equal. However, this relationship breaks down if marginal utility of money
is decreasing. Put differently, if one player is very rich and another is poor, then taking some amount of
money x from the rich will create much less dissatisfaction than the same amount x taken from the poor.
This asymmetry will be reflected in the appropriateness of the consequences, with poor player being nor-
matively favored in the same way as it was shown at the end of Example 2. Thus, we see that the more
concave the utility of money is the more maximin the preferences expressed by the norm function will be-
come, since the poor players’ dissatisfactions will be given relatively more and more weight as compared
to the rich players.

Case 13. Millionaires playing DG. Interestingly, there is a perfect evidence of this effect in the litera-
ture. Smeets et al. (2015) report the results of a Dictator game played by millionaires and low-income
participants. Millionaires, when proposed to split e 100 between themselves and a low-income recipi-
ent, give on average 71.4% to the recipient, with 45.6% of them giving the entire e 100. This is in stark
contrast with the average giving of 28.4% in standard Dictator games (Engel, 2011). At the same time,
millionaires matched with other millionaires give on average 50%. Such behavior is ideally explained in
our framework: the dissatisfaction that millionaires feel from losing e 100 is incomparably smaller than
the dissatisfaction that low-income person feels when losing the same amount. The dissatisfactions of
two millionaires, however, are equal, which results in equal split of money. Thus, the norm favors giving
money to the low-income recipient, while prescribing equal split in case of two players with the same
income. �

The behavior of millionaires in this case is consistent with the idea of maximin preferences: maximize
the payoff of the poorest player. This case suggests that maximin preferences manifest themselves when
there is a noticeable difference in income levels of the players. In “standard” experiments with university
students this effect can also be spotted, though it is, understandably, not as pronounced as in Case 13
above. Panizza et al. (2018) study constant efficiency mini-DGs with two alternatives and find that sub-
jects tend to be much more sharing when the differences in “income” between a dictator and a recipient
are large. In their task subjects split 60 tokens and choose non-selfish option significantly more often when
choosing between options (60, 0) and (55, 5) than when choosing between options (30, 30) and (35, 25)
with the same payoff difference (the first payoff is for the dictator). Subjects are more sharing in the
former case even after the differences in their norm-dependent utilities were controlled for.2 In addition, in ex-
periments reported in Engelmann and Strobel (2004) and Baader and Vostroknutov (2017) subjects choose

2The norm functions in Panizza et al. (2018) are elicited using norm elicitation task by Krupka and Weber (2013).
The elicited norm functions did not account for the observed behavioral effect, which can be because the norm
elicitation task was not flexible enough, or because subjects were influenced by a “meta-context” when expressing
their normative beliefs.
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allocations for three players. In both studies, by circumstance, one of the three players was assigned
much smaller payoff than the other two. This created a similar situation when the dissatisfaction of this
“poor” player were seemingly more important than those of other players. As a result, in all mini-tasks
where maximin and efficiency favored different outcomes around half of the subjects chose maximin and
another half efficiency, while in cases when efficiency and maximin were aligned the choices of almost
all subjects were aligned as well (see Case 1 in Section 3.1). This demonstrates that subjects differ in how
they assess the normative valences of consequences. While some use monetary payoffs to make infer-
ences about which consequence is more appropriate, some others take into account the relative income of
the players, as if performing a concave transformation of payoffs. Interestingly, Baader and Vostroknutov
(2017) report that students with economics background favor efficiency principle, while students without
such background (Arts and Culture, European Studies) favor maximin. This finding is in line with this
idea: economics students are taught to perceive allocations in terms of monetary gains and losses, while
non-economics students are more familiar with general thinking related to poverty and inequality.

To model such situations we propose a simple change in the calculation of dissatisfaction:

di(c1, c) = max{ f (ui(c))− f (ui(c1)), 0}, (7)

Here ui(c) is thought of as a monetary payoff of player i in consequence c and f is a concave increasing
function that represents diminishing marginal utility of money. Thus, for a fixed difference between
two low payoffs the dissatisfaction is higher than for the same difference between high payoffs. We
demonstrate how the concept works with two examples.

Example 7. Suppose the set of consequences is C = {a, b} with two players 1 and 2, and the payoffs
are defined as u(a) = (I1, I2 + x), u(b) = (I1 + x, I2). In words, players have incomes I1 and I2 and one
of them chooses whether an amount x goes to first or second player. Notice that the efficiency of the
two allocations, in terms of money, is the same, so this can be thought of as a mini-DG, similar to those
studied in Panizza et al. (2018). The overall dissatisfaction of a is D(a) = f (I1 + x)− f (I1) and the overall
dissatisfaction of b is D(b) = f (I2 + x)− f (I2). Then if I1 > I2, we have D(a) < D(b). This means that
consequence a, where x goes to the poorer player, is more appropriate than the one in which x goes to the
richer player. This is consistent with maximizing minimal payoff. �

Example 8. Consider a DG with consequences C = [0, 1] and utilities defined by u(c) = (I + 1− c, 5+ c).
Here I is the income of the dictator and 5 is the income of the recipient. Suppose that we transform the
payoffs with the function f (x) = ln x.
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Figure 17: Norm functions in the DG with income of dictator changing from 5, to 5, to 500.

Figure 17 shows the norm functions for I = 5, 10, 50, 500. As income of the dictator grows relatively to
that of the recipient, the norm increases from c∗ = 0.5 to 0.65 to 0.9 to 0.99. Without transforming the
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payoffs with f , the norm is always c∗ = 0.5. Thus, a concave transformation is necessary in our model to
explain maximin behavior. �
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D Comparison of Norm Functions across Environments
In this appendix we discuss how to compare norm functions between environments. This is mostly im-
portant when the norm functions in different treatments of the same experiment or in otherwise related
situations should be compared. We use Example 4 to provide intuition. In the example a bystander who
sees someone drowning has options “do nothing” and “attention” in one environment, but in a related
environment he can also “call” and “swim.” The consequence “do nothing” is intuitively less appropriate
when one has more opportunities to help a drowning stranger.

We need a way to compare normative valences of a consequence c that belongs to two different sets
of consequences C1 and C2 (c ∈ C1 ∩ C2). We assume that the payoffs from c, u(c), are the same in
both sets of consequences. We treat the environments 〈N, C1, u1, D1〉 and 〈N, C2, u2, D2〉 as separate and
possessing their own norm functions ηC1 and ηC2 . In order to compare these norm functions on C1 ∩
C2, we need to find some common ground, since ηC1 and ηC2 are normalized using completely different
dissatisfactions. We postulate that if a consequence ci ∈ Ci, i ∈ {1, 2}, is the most appropriate in its
corresponding set or ηCi(ci) = 1, then it should also be the most appropriate in the relative norm function
that we construct below. In other words, the appropriateness of the best consequence does not depend
on the relative comparisons made. The normative valences for all other consequences are normalized
using dissatisfactions in both C1 and C2. In particular, let mi = minc∈Ci Di(c) and m = mini∈{1,2} mi,
and redefine the dissatisfactions as D̄i(c) = Di(c) − mi + m, so that the lowest dissatisfaction (for the
most appropriate consequence) is the same in both environments.3 Let x = maxi∈{1,2}maxc∈Ci D̄i(c) be
the highest dissatisfaction in all environments and use the interval [m, x] for normalization of all overall
dissatisfaction functions.

Definition 2. For 〈N, C1, u1, D1〉 and 〈N, C2, u2, D2〉, call η̈Ci : Ci → [−1, 1] defined as η̈Ci(c) := [−D̄i(c)][−x,−m]

a relative norm function or norm function relative to C−i.

In this definition, first, the overall dissatisfactions D1 and D2 are computed and then the relative
norm function η̈C1 is calculated as−D̄1, which is normalized from the interval that covers dissatisfactions
in both environments to [−1, 1].

Example 9. Drowning example with relative norm functions. We return to the two situations presented
in Example 4. Recall that C = {do nothing, swim, call, attention} and C1 = {do nothing, attention} with
utilities u(do nothing) = (0, 0) and u(c) = (1, 1) for all other consequences c. For the superset C we
have D(do nothing) = 3 and D(c) = 0 for other consequences. For C1 we have D1(do nothing) = 1
and D1(attention) = 0 for other consequences. Thus, ηC(do nothing) = −1 and ηC(c) = 1 for the other
consequences. From Definition 2 we obtain η̈C1(do nothing) = 1

3 and η̈C1(attention) = 1. Thus, the
appropriateness of doing nothing is higher when there are few options to help, exactly as our intuition
had it. �

3Note that adding a constant to Di or multiplying it by a positive constant does not change the associated norm
function ηCi .
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E Norm-Dependent Utility in Games with Observable Actions
Let a tuple Γ = 〈N, C, u, D, H〉 be an extensive form game with observable actions, where 〈N, C, u, D〉 is an
environment with the set of consequences C corresponding to the set of terminal nodes and H is the finite
set of histories. Notice that Γ is a standard game with utilities being the material payoffs or consumption
utilities.

Let us define some notation. h = (a1, a2, ..., a`) represents a history of length ` where at = (at
1, ..., at

N)
is a profile of actions chosen at stage t, 1 ≤ t ≤ `. Each history h becomes commonly known to all players
once it occurs. Empty history {∅} ∈ H represents the beginning of the game. After history h player i has
the set of actions Ai(h), which is empty if and only if h ∈ C ( H, where C is thought of as the set of all
terminal histories. Let p(h) denote the history immediately preceding h and Ch the set of terminal nodes
that can occur after h.

E.1 Games without a Separate Punishment Mechanism
We start with the setup without specially defined punishment mechanisms. Our goal is to define the
norm function at each history and to determine the norm-dependent utilities in the terminal nodes. We
proceed recursively and define the norm function at history h, which is a function ηh : Ch → [−1, 1] that
attaches normative valences to all consequences following h, through the norm function in the immedi-
ately preceding history p(h) and a punishment function. Notice that the norm function at the beginning
of the game is defined as in Section 2.1. Namely, η{∅} = ηC.

We assume that at any history h the players reason locally about the changes in the norm function that
need to be made. Specifically, they take ηp(h) and reason about who should be punished for the actions
taken in p(h) that led to h. This means that they combine ηp(h) with the punishment functions µai

i where
ai ∈ Ai(p(h)) is the action of player i that led to h. Thus, to determine ηh we need to specify punishment
functions µai

i and the way they are combined with ηp(h).
To define µai

i we use the same logic as in Section 2.2. We determine the degree of norm violation
of each player i and construct the punishment in the i’s payoff space. Let Cai

p(h) ⊆ Cp(h) be the set of
consequences reachable given the choice ai of player i. Notice that Cai

p(h) is weakly larger than Ch, the set
of consequences reachable in h, since players choose in a normal-form stage game and the actions of other
players are not restricted. It makes sense to consider Cai

p(h) as a set of consequences that should be used for
the determination of punishment since player i cannot be held responsible for what other players choose.
Let Mp(h) = argmaxc∈Cp(h)

ηp(h)(c) be the set of the most appropriate consequences according to ηp(h). In
the simplest case, all players choose actions ai that leave some consequences in Mp(h) reachable. If this
happens, then no one should be punished and the norm function in h is the same as the norm function in
p(h). In other words, set

ηh = ηp(h) if ∀i∈N Cai
p(h)∩Mp(h) 6= ∅.4

Here the understanding is that ηh is equal to ηp(h) on its domain, which is the subset of the domain of
ηp(h). If at least one player has chosen an action which makes all consequences in Mp(h) unreachable
then players go into the “punishment mode” in which the punishment functions are combined with the
original ηp(h). To determine µai

i we first calculate the degree of norm violation for player i as

rai
i = max

c∈Cp(h)

ηp(h)(c)− max
c∈C

ai
p(h)

ηp(h)(c).

4Notice that this definition allows for the possibility that each player chooses the action consistent with some
consequence in Mp(h), but the resulting action profile a = (ai)i∈N makes all consequences in Mp(h) unreachable.
This, for example, happens in Type 3 Prisoner’s Dilemma described in Example 6 when both players choose to
defect. We take the stance that players should not be punished in this circumstance, but alternative definitions can
as well be considered.
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rai
i is positive only for players who chose the actions inconsistent with all consequences in Mp(h). Let

V = {i | rai
i > 0} ⊆ N denote the set of such players. For each i ∈ V we define three payoffs: 1) the

payoff that i would have gotten in the most socially appropriate consequence, uim = maxc∈Mp(h) ui(c),
or the payoff that she chose to forgo when choosing ai; 2) the minimal payoff that she can obtain in the
whole game, ui = minc∈C ui(c), which serves as a reference point for the harshest punishment;5 and 3)
the payoff that i “aims at” by choosing ai, ūi = maxc∈C

ai
p(h)

ui(c). Let mi = min{uim, ūi} and define the

punishment norm function µai
i as shown in Figure 1 in Section 2.2. Finally we calculate the norm function

ηh by combining ηp(h) and the punishment functions (µai
i )i∈V :

ηh(c) = σηp(h)(c) + (1− σ)
∑i∈V µai

i (c)
|V| ∀c∈Ch

where µai
i (c) is short for µai

i (u(c)). Essentially, ηh is a convex combination of ηp(h) and the average pun-
ishment function that gives equal weights to all players.6

The construction above shows how to calculate the norm function for each node in game Γ. Since
the norm function at the beginning of the game is known to be η{∅} = ηC, we can recursively compute
the norm functions for all histories h∈ H\C. The last step is to redefine the payoffs in Γ with the norm-
dependent utility. Let Γ′ = 〈N, C, w, H〉 be the same game only with utilities defined by

wi(c) := ui(c) + φiη
p(c)(c) ∀i∈N∀c∈C

where ηp(c) is the norm function in the node that immediately precedes terminal node c. Γ′ is a standard
extensive form game that can be analyzed using any equilibrium concept.

E.2 Games with a Separate Punishment Mechanism
In the previous section we showed how to introduce norms into any game with observable actions with-
out separate punishment mechanisms. Most games analyzed in the literature fall under this category.
However, this construction also carries certain implicit assumptions. For example, the fact that punish-
ment functions are amalgamated into the norm function of the game as it unfolds implies that punishment
for a single act of “wrong-doing” at history h has influence on all subsequent histories and eventually fi-
nal payoffs. In other words, the model above has no absolution, which entails that violators are punished
for each norm violation until the end of the game. This might not be the most realistic way in which
punishment is actually carried out. If an external punishment mechanism exists “outside” of the game, it
is reasonable to think that each norm violation is punished with this mechanism right after it occurs, and
that this punishment absolves the violation. This latter point implies that there is no need to update the
norm function in the game itself and it proceeds in accordance with the original norm function defined
before the game started.7

5An alternative possibility is to consider history dependent punishment reference points ui(h) = minc∈Ch ui(c).
We leave it to the future research to determine whether the harshest punishment options are perceived as history
dependent or constant.

6Alternative definitions are possible. For example, instead of the average punishment function, a more pun-
ishment oriented approach would be to take the envelope of the punishment functions max{µa1

1 (c), ..., µaN
N (c)}. In

Section 4.2 we also propose that players may have their personal punishment weights that reflect their role entitle-
ments, in which case the average should be replaced with a weighted sum.

7Though, it should be noted that the model without a separate punishment mechanism does have one desirable
property: players who do not want to punish others get punished themselves, since the updated norm function in
each history incorporates the punishment. The model with a separate punishment mechanism, at least the way we
put it, does not have this property.
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In this section we show how to incorporate norms assuming that punishment can be exercised outside
the game. We start with the same game Γ as before and the norm function ηC defined for it. We assume
that as the game is played there is a possibility for each player to punish any other player at each history
h ∈ H. Notice that this includes the terminal nodes C, which means that punishment can be carried out
after the last move in the game as well. The norm function ηC in the game stays unchanged, so players
receive norm-dependent utility in accordance with it. In addition, the final payoffs are adjusted with the
costs of punishment that players incur and the punishment that they receive from other players.

We set up the punishment mechanism as follows. As before suppose we are at history h and the
actions ai ∈ Ai(p(h)) for all i ∈ N are those that lead to h. We determine the punishment functions µai

i
in the same way as in the previous section only with ηp(h) = ηC on its domain. µai

i is a function from
the payoff interval [ui, ūi] to normative valences [−1, 1]. Assume that each player j 6= i has access to
a punishment mechanism that allows j to decrease i’s payoff with a cost. Suppose that j believes that
without punishment i will get her desired payoff ūi, so j solves the following maximization problem to
decide how much payoff to subtract from i:

sai
ji = arg max

s∈[0,ūi−ui ]
φj(σ + (1− σ)µai

i (ūi − s))− ζ(s).

Here φj ≥ 0 is j’s norm-following propensity; σ + (1− σ)µai
i (s) is the punishment norm function adjusted

with the weight σ as in Section 2.2; and ζ(x) is an increasing cost function with ζ(0) = 0.8 sai
ji is the

amount of payoff that j has decided to subtract from i. Let qai
ji = ζ(sai

ji ) denote the cost that j incurs for the
punishment of i. This essentially defines the costs that j and i have from punishment.9

Notice that the punishment decisions are not strategic and happen separately from the game. The
way that the players take the punishment into account is through the losses they suffer at the end of
the game. We redefine the payoffs in Γ by considering a modified game Γ′′ = 〈N, C, v, H〉 with utility
for player i calculated as follows. For any consequence c, which is also a terminal history, let us write
c = (a1, a2, ..., a`), where at = (at

1, ..., at
N) is the action profile chosen in stage t that leads to c. Let

vj(c) := uj(c) + φjηC(c)−
`

∑
t=1

∑
i 6=j

qat
i

ji + s
at

j
ij .

The utility vj is simply the norm-dependent utility with the norm function ηC minus the punishment that
player j incurs on the way to c and the cost of punishment that j metes upon others. Γ′′ is a standard
extensive form game that can be solved by any equilibrium concept.

It should be noted that the way we construct Γ′′ has many ad hoc assumptions about how exactly
punishment is done. There are a plethora of variants that can be considered. We do not claim that this is
the way it should be modeled, but just propose one possibility how it can be done.

8In the experiments subjects usually pay one experimental unit to subtract three from the punished player. In
this case ζ(x) = x

3 .
9By the definition of µi in Section 2.2, if no violation of the norm happened then µi = 1. In this case j optimally

chooses to not punish, or pay 0 for it.
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F Proofs
Proof of Proposition 1. Consider an environment 〈N, C, u, R〉 and two consequences c1, c2 ∈ C with
ui(c1) ≥ ui(c2) for all i ∈ N with at least one strict inequality. For any i with ui(c1) = ui(c2) we have
Di(c1) = Di(c2), and for any i with ui(c1) > ui(c2) it is true that

Di(c1) =
∫

c∈C
max{ui(c)− ui(c1), 0}dc ≤

∫
c∈C

max{ui(c)− ui(c2), 0}dc = Di(c2).

Thus, D(c1) ≤ D(c2). When C is finite the inequality is strict since di(c2, c1) > 0 for i with ui(c1) > ui(c2).
When C has cardinality of the continuum, it is possible to have D(c1) = D(c2). For example, for two
players suppose that the image u[C] = {(x, x)|x ∈ [0, 1]} ∪ (2, 2). The payoffs in two consequences are
u(c1) = (2, 2) and u(c2) = (1, 1). Then c1 Pareto dominates c2, but D(c1) = D(c2) = 0. �

Proof of Proposition 2. For any consequence cj the overall dissatisfaction is given by

D(cj) =
j−1

∑
i=1

(xj − xi) +
K

∑
i=j+1

(xi − xj),

which can be rewritten as

D(cj) =
j−1

∑
i=1

i(xi+1 − xi) +
K

∑
i=j+1

(K− i + 1)(xi − xi−1).

From this it follows that for all j = 1..K− 1

D(cj+1)− D(cj) = (2j− K)(xj+1 − xj).

The difference is (weakly) negative for j < K
2 and positive for j > K

2 . Thus, the consequences with the
smallest overall dissatisfaction are j = K

2 and j = K
2 + 1 if K is even, and j = K

2 + 1
2 is K is odd. �
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G Auxiliary Material

G.1 Case 3. List (2007).

Fig. 1.—Baseline treatment (data online table B1)

Fig. 2.—Treatment Take ($1) (data online table B2)

Fig. 3.—Treatment Take ($5) (data online table B3)

Figure 18: Data from List (2007).

G.2 Case 5. McCabe et al. (2003).
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Figure 19: Norm functions with linear utility for the games analyzed in McCabe et al. (2003).
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G.3 Case 8. Oxoby and Spraggon (2008).

Figure 20: Data from Oxoby and Spraggon (2008).
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G.4 Case 10. Chen and Li (2009).

Choice Norm Functions

Game Role Payoffs Ingr. Outgr. Ingroup Outgroup

Out L R L R L R L R L R ∆Choice ∆Norms

Dict1 A 400 750 0.30 0.70 0.45 0.55 –1.00 1.00 0.00 1.00 0.15 1.00
B 400 400

Dict2 A 400 750 0.67 0.33 0.73 0.27 –1.00 1.00 0.11 1.00 0.06 1.11
B 400 375

Dict3 A 300 700 0.68 0.32 0.86 0.14 –1.00 1.00 0.27 1.00 0.18 1.27
B 600 500

Dict4 A 200 600 0.34 0.66 0.63 0.38 –1.00 1.00 0.16 1.00 0.29 1.16
B 700 600

Dict5 A 0 400 0.56 0.44 0.77 0.23 –1.00 1.00 0.07 1.00 0.21 1.07
B 800 400

Ingroup A’s norm f. B’s norm f.

Out L R Out L R Out L R
Resp1a A 750 400 750 0.26 0.74 0.48 0.53 –1.00 0.88 1.00 0.00 0.88 1.00 –1.00 0.94 1.00 0.22 0.06

B 0 400 400
Resp1b A 550 400 750 0.39 0.61 0.55 0.45 1.00 –1.00 0.98 0.68 –0.98 1.00 1.00 –0.33 0.66 0.16 0.99

B 550 400 400
Resp6 A 100 75 125 0.18 0.83 0.33 0.68 1.00 –1.00 –0.40 1.00 –0.22 0.38 1.00 –0.78 –0.48 0.15 0.30

B 1000 125 125
Resp7 A 450 200 400 0.10 0.90 0.29 0.71 1.00 –1.00 0.20 1.00 –0.65 0.55 1.00 –0.35 0.25 0.19 0.60

B 900 400 400
Resp2a A 750 400 750 0.67 0.33 0.80 0.20 –1.00 0.89 1.00 0.00 0.88 1.00 –1.00 0.95 1.00 0.13 0.06

B 0 400 375
Resp2b A 550 400 750 0.68 0.32 0.84 0.16 1.00 –1.00 0.71 0.82 –0.85 1.00 1.00 –0.33 0.39 0.16 0.99

B 550 400 375
Resp3 A 750 300 700 0.56 0.44 0.73 0.27 –0.98 0.05 1.00 0.03 –0.01 1.00 –1.00 0.58 1.00 0.17 0.53

B 100 600 500
Resp4 A 700 200 600 0.35 0.65 0.58 0.42 –0.93 –0.93 1.00 0.11 –1.00 1.00 –1.00 0.11 1.00 0.23 1.04

B 200 700 600
Resp5a A 800 0 400 0.46 0.54 0.59 0.41 –0.97 –0.97 1.00 0.05 –1.00 1.00 –1.00 0.05 1.00 0.13 1.02

B 0 800 400
Resp5b A 0 0 400 0.54 0.46 0.76 0.24 –0.86 –0.86 1.00 –1.00 –1.00 1.00 0.21 0.21 1.00 0.22 1.07

B 800 800 400
Resp8 A 725 400 750 0.66 0.34 0.76 0.24 –1.00 0.89 1.00 0.00 0.89 1.00 –1.00 0.95 1.00 0.10 0.06

B 0 400 375
Resp9 A 450 350 450 0.69 0.31 0.78 0.23 –1.00 0.98 1.00 0.00 0.96 1.00 –1.00 1.00 1.00 0.09 0.02

B 0 450 350
Resp10 A 375 400 350 0.99 0.01 0.96 0.04 1.00 –0.29 –1.00 1.00 0.40 –0.10 1.00 –0.34 –0.90 –0.03 –0.15

B 1000 400 350
Resp11 A 400 400 0 0.95 0.05 0.89 0.11 1.00 0.92 –1.00 1.00 0.96 –0.50 1.00 0.92 –0.50 –0.06 –0.50

B 1200 200 0
Resp12 A 375 400 250 0.93 0.08 0.80 0.20 1.00 0.15 –1.00 1.00 0.61 –0.41 1.00 0.11 –0.59 –0.13 –0.44

B 1000 400 350
Resp13a A 750 800 0 0.95 0.05 0.86 0.14 1.00 0.94 –1.00 1.00 0.97 –0.52 1.00 0.94 –0.48 –0.09 –0.52

B 750 200 0
Resp13b A 750 800 0 0.90 0.10 0.84 0.16 1.00 0.91 –1.00 1.00 0.96 –0.85 1.00 0.90 –0.15 –0.06 –0.85

B 750 200 50
Resp13c A 750 800 0 0.91 0.09 0.73 0.28 1.00 0.90 –1.00 1.00 0.95 –0.89 1.00 0.90 –0.11 –0.18 –0.89

B 750 200 100
Resp13d A 750 800 0 0.81 0.19 0.68 0.33 1.00 0.90 –1.00 1.00 0.95 –0.92 1.00 0.89 –0.08 –0.13 –0.92

B 750 200 150

Table 2: Normative valences and choices in Chen and Li (2009). ∆Choice is the difference between
the Choice L in different- and same-group games. ∆Norms is the difference of differences between B’s
normative valences of L and R and Ingroup normative valences L and R. In the games player A can first
choose Out, which ends the game, or pass the move to player B who chooses between L and R.
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