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Abstract. This paper provides a framework to study the formation of risk-sharing networks

through costly social investments, in particular the inefficiencies and resulting inequality as-

sociated with such processes. First, individuals invest in relationships to form a network.

Next, neighboring agents negotiate risk-sharing arrangements. There is never underinvest-

ment, but overinvestment is possible and we find a novel trade-off between efficiency and

equality. The most stable efficient network also generates the most inequality. When the

income correlation structure is generalized by splitting individuals into groups, such that

incomes across groups are less correlated but these relationships are more costly, there can

be underinvestment across group but not within group. We find that more central agents

have better incentives to form across-group links, reaffirming the efficiency inequality trade-

off. In general, endogenous network formation in the risk sharing context tends to result in

highly asymmetric networks and stark inequalities in consumption levels.
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1. Introduction

In the context of missing formal insurance markets and limited access to lending and

borrowing, incomes may be smoothed through informal risk-sharing agreements that utilize

social connections. A large theoretical and empirical literature studies how well informal

arrangements replace the missing markets.1 However, the existing literature does not investi-

gate a potential downside to these agreements: if people’s network position affects the share

of surplus generated by risk sharing they appropriate, social investments may be distorted

and inequality may endogenously arise.2

Our starting premise is that social networks are endogenous and that their structure affects

how the surplus from risk sharing is split. There is growing empirical evidence that risk-

sharing networks respond to financial incentives, and that in general risk-sharing networks

form endogenously, in a way that depends on the economic environment: see for example

recent work by Binzel et al. (2017) and Banerjee et al. (2014b,c), which in different contexts

look at how social networks respond to the introduction of financial instruments such as

savings vehicles or microfinance. Our main goal is to develop a theoretical framework that

can be used to think about the endogeneity of risk sharing networks, and to interpret how

these networks change after certain economic interventions, or more generally after changes

in the economic environment.

In this paper we provide an examination of these issues, by considering a simple two stage

model. In the first stage villagers invest in costly bilateral relationships, knowing that in the

second stage they will reach informal risk-sharing agreements. These agreements determine

how the surplus generated by risk sharing is distributed, and they depend on the endogenous

structure of the social network from the first stage. In this way we elucidate new costs as-

sociated with informal risk-sharing. Once incomes have been realized, risk sharing typically

reduces inequality by smoothing incomes. Nevertheless, asymmetric equilibrium networks

generate inequality in expected utilities terms. Agents occupying more advantageous posi-

tions in the social network appropriate considerably more of the benefits generated by risk

sharing. Indeed, seeking to occupy such positions in the network might lead villagers to

spend too much time building social capital. Alternatively, if risk sharing with one neighbor

generates positive spillovers for other neighbors, there can be too little investment in forming

relationships undermining the effectiveness of informal risk-sharing.

Empirical work suggests that both underinvestment and overinvestment in social capital

are possible, in different contexts. Austen-Smith and Fryer (2005) cites numerous references

from sociology and anthropology, suggesting that members of poor communities allocate

1An incomplete list of papers includes Rosenzweig (1988), Fafchamps (1992), Coate and Ravallion (1993),
Townsend (1994), Udry (1994), Ligon, Thomas and Worrall (2002), Fafchamps and Gubert (2007), Bloch,
Genicot, and Ray (2008), Angelucci and di Giorgi (2009), Jackson, Rodriguez-Barraquer and Tan (2012),
Ambrus, Mobius and Szeidl (2014).
2Previous works that do consider the network formation problem include Bramoullé and Kranton (2007a,b)
in the theoretical literature and Attanasio et al. (2012) in the experimental literature. For a related paper
outside the networks framework, see Glaeser et al. (2002).
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inefficiently large amounts of time to activities maintaining social ties, instead of productive

activities. In contrast, Feigenberg et al. (2013) find evidence in a microfinance setting that it

is relatively easy to experimentally intervene and create social ties among people that yield

substantial benefits. One explanation for this finding is that there is underinvestment in

social relationships.

It is important to study the above aspects of informal risk sharing, both to put related aca-

demic work (which often takes social connections to be exogenously given) into context and

to guide policy choices. Consider, for example, microfinance. Two central aims of such inter-

ventions are to increase the efficiency of investment decisions by providing better access to

capital and to reduce inequality. Clearly the value of microfinance then depends on whether

informal risk sharing promotes equality or inequality and whether there is underinvestment,

overinvestment or efficient investment in social connections. If there is overinvestment, mi-

crofinance has a greater scope for efficiency savings in terms of reducing people’s allocation of

time into social investments. With underinvestment, however, it has more scope for smooth-

ing incomes. If there is neither under- nor overinvestment, it tells us that informal risk sharing

is working relatively well as a second-best solution. Understanding which regime applies can

help anticipate policy implications and evaluate welfare impacts of interventions.

For analytical tractability and expositional purposes, in the main text we impose sev-

eral specific assumptions: agents have CARA utilities, their income realizations are jointly

normal, and that surplus is negotiated according to a particular bargaining process, split-the-

difference negotiations (Stole and Zwiebel (1996)). In the Supplementary Appendix, Section

A we extend our main results to much more general settings, dropping all of the specific

assumptions above.

In the first stage of interactions, agents choose with whom to form connections. Link

formation is costly, as in Myerson (1991) and Jackson and Wolinsky (1996). In the second

stage, pairs of agents who have formed a connection commit to a bilateral risk-sharing agree-

ment (transfers contingent on income realizations). We assume that these agreements can

be perfectly enforced. We investigate agreements satisfying two simple properties. First we

require agreements to be pairwise efficient, in that no pair of directly connected agents leave

gains from trade on the table.3 Second, following Stole and Zwiebel (1996), we require the

agreements to be robust to “split-the-difference” renegotiations.4 We show that this leads to

3Although we consider a model in which there is perfect bilateral risk sharing, we could easily extend the
model so that some income is perfectly observed, some income is private, and there is perfect risk sharing of
observable income and no risk sharing of unobservable income. This would be consistent with the theoretical
predictions of Cole and Kocherlakota (2001) and the empirical findings of Kinnan (2011). In the CARA
utilities setting, such unobserved income outside the scope of the risk-sharing arrangement does not affect our
results.
4Stole and Zwiebel (1996) model bargaining between many employees and an employer. This scenario can be
represented by a star network with the employer at the center.
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the surplus being divided by the Myerson value,5 a network-specific version of the Shapley

value.6 The transfers required to implement the agreements we identify are particularly sim-

ple. Each agent receives an equal share of aggregate realized income (as in Bramoullé and

Kranton, 2007a) and on top of that state independent transfers are made.7

A key implication of the Myerson value determining the division of surplus is that agents

who are more centrally located, in a certain sense, receive a higher share of the surplus. More-

over, in our risk-sharing context it implies that agents receive larger payoffs from providing

“bridging links” to otherwise socially distant agents than from providing local connections.8

Empirical evidence supports this feature of our model—see Goyal and Vega-Redondo (2007),

and references therein from the organizational literature: Burt (1992), Podolny and Baron

(1997), Ahuja (2000), and Mehra et al. (2001).

In the network formation stage, we study the set of pairwise-stable networks (Jackson and

Wolinsky, 1996).9

Our analysis considers a community comprising of different groups where all agents within

each group are ex-ante identical, and establishing links within groups is cheaper than across

groups. We also assume that the income realizations of agents within groups are more

positively correlated than across groups. Groups can represent different ethnic groups or

castes in a given village, or different villages. We find that there can be overinvestment

within groups but not underinvestment, whereas across groups underinvestment is likely to

be the main concern.

To see the intuition about overinvestment within groups, we first consider the case of

homogeneous agents, that is, when there is only one group. Using the inclusion–exclusion

principle from combinatorics,10 we develop a new metric to describe how far apart two agents

located in a network are, which we call the Myerson distance. Using this distance we provide

a complete characterization of stable networks. We show that for homogenous agents there

can never be underinvestment in social connections, as agents establishing an essential link

(connecting two otherwise unconnected components of the network) always receive a ben-

efit exactly equal to the social value of the link. However, overinvestment, in the form of

redundant links, is possible, and becomes widespread as the cost of link formation decreases.

5For related noncooperative foundations for the Myerson value, see Fontenay and Gans (2014) and Navarro
and Perea (2013). Slikker (2007) also provides noncooperative foundations, although the game analyzed is
not decentralized: offers are made at the coalitional level.
6The Myerson value is also often assumed in social networks contexts on normative grounds, as a fair allocation:
see a related discussion on pp. 422–425 of Jackson (2010).
7For investigations of the division of surplus in social networks in other contexts, see Calvo-Armengol (2001,
2003), Corominas-Bosch (2004), Manea (2011), Kets et al. (2011) and Elliott and Nava (2016).
8More precisely, in Section 4 we introduce the concept of Myerson distance to capture the social distance
between agents in the network, and show that a pair of agents’ payoffs from forming a relationship are
increasing in this measure.
9Results from Calvo-Armengol and Ilkilic (2009) imply that under some parameter restrictions—for example
when agents are ex ante identical—the set of pairwise-stable outcomes is equivalent to the (in general more
restrictive) set of pairwise Nash equilibrium outcomes.
10See Chapter 10 in van Lint and Wilson (2001).
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Our main finding is that even though agents are ex-ante identical, if stable networks

are asymmetric, inequality will result. We identify a novel trade-off between efficiency and

inequality. Among all possible efficient network structures, we find that the most stable (in

the sense of being stable for the largest set of parameter values) results in the most unequal

division of surplus (for any inequality measure in the Atkinson class). Conversely, the least

stable efficient network entails the most equal division of surplus among all efficient networks.

Although agents are ex-ante identical, efficiency considerations push the structure of social

connections towards asymmetric outcomes that elevate certain individuals. Socially central

individuals emerge endogenously from risk-sharing considerations alone.

Turning attention to the case of multiple groups, we find that across-group underinvestment

becomes an issue when the cost of maintaining links across groups is sufficiently high.11 The

reason is that the agents who establish the first connection across groups receive less than the

social surplus generated by the link, providing positive externalities for peers in their groups.

To consider which agents are best incentivised to provide across-group links we introduce a

new measure of network centrality which we term Myerson centrality. Agents more central in

this sense have better incentives to provide across-group links. This provides a second force

pushing some agents within a group to be more central than others. For example, with two

groups, we show that the most stable efficient network structure involves stars within groups,

connected by their centers. This reinforces the trade-off between efficiency and equality in the

many-groups context. Our model also predicts that more central agents within groups should

play a particularly highlighted role, relative to peripheral agents, in maintaining across-group

links when the value of informal risk sharing is smaller, as in this case maintaining such links

does not provide enough individual benefits for peripheral individuals.

Among the theoretical studies on social networks and informal risk sharing that are most

related to ours include Bramoullé and Kranton (2007a,b), Bloch et al. (2008), Jackson et al.

(2012), Billand et al. (2012), Ali and Miller (2013, 2016), and Ambrus et al. (2014). Many

of these papers focus on the enforcement issues we abstract from, and investigate how social

capital can be used to sustain cooperation for lower discount factors than would otherwise be

possible. We take a complementary approach and instead focus on the distribution of surplus

and the incentives this creates for social investments. One way of viewing our approach is

an assumption on the discount factor in a dynamic version of our model. As long as the

discount factor is high enough, our equilibrium agreements satisfy the necessary incentive

compatibility constraints to be able to be enforced in equilibrium of the dynamic game.

Among the aforementioned papers, Bramoullé and Kranton (2007a,b) and Billand et al.

(2012) investigate costly network formation. Bramoullé and Kranton’s (2007a,b) model as-

sumes that the surplus on a connected income component is equally distributed, indepen-

dently of the network structure. This rules out the possibility of overinvestment or inequality,

11While across-group overinvestment remains possible, the main concern when across-group link costs are
relatively high is underinvestment.
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and leads to different types of stable networks than in our model. Instead of assuming op-

timal risk-sharing arrangements, Billand et al. (2012) assume an exogenously given social

norm, which prescribes that high-income agents transfer a fixed amount of resources to all

low-income neighbors. This again leads to very different predictions regarding the types of

networks that form in equilibrium.

More generally, network formation problems are important. Establishing and maintaining

social connections (relationships) is costly, in terms of time and other resources. However,

on top of direct consumption utility, such links can yield many economic benefits. Papers

studying formation in different contexts include Jackson and Wolinsky (1996), Bala and

Goyal (2000), Kranton and Minehart (2001), Hojman and Szeidl (2008), and Elliott (2015).

Although we study a specific network formation problem tailored to risk sharing in villages,

the general structure of our problem is relevant to other applications.12

The remainder of the paper is organized as follows. Section 2 describes risk sharing on

a fixed network. In Section 3 we introduce a game of network formation with costly link

formation. We focus on network formation within a single group in Section 4 and then turn

to the formation of across-group links in Section 5. We discuss how the model might be taken

to data in Section 6. Section 7 concludes.

2. Preliminaries and Risk Sharing on a Fixed Network

To study social investments and the network formation problem, first we need to specify

what risk-sharing arrangements take place once the network is formed. Below we introduce

an economy in which agents face random income realizations, introduce some basic network

terminology, and discuss risk-sharing arrangements for a given network.

2.1. The socio-economic environment. We denote the set of agents in our model by N,

and assume that they are partitioned into a set of groups M. We let G : N → M be a

function that assigns each agent to a group; i.e., if G(i) = g then agent i is in group g. One

interpretation of the group partitioning is that N represents individuals in a region (such as

a district or subdistrict), and groups correspond to different villages in the region. Another

possible interpretation is that N represents individuals in a village, and the groups correspond

to different castes.

Agents in N face uncertain income realizations. For tractability, we assume that incomes

are jointly normally distributed, with expected value µ and variance σ2 for each agent.13 We

assume that the correlation coefficient between the incomes of any two agents within the

12For a different and more specific application, suppose researchers can collaborate on a project. Each re-
searcher brings something heterogenous and positive to the value of the collaboration, so that the value of
the collaboration is increasing in the set of agents involved. Collaboration is possible only when it takes place
among agents who are directly connected to another collaborator and surplus is split according to the Myerson
value (as in our work, motivated by robustness to renegotiations). Such a setting fits into our framework.
13This specification implies that we cannot impose a lower bound on the set of feasible consumption levels.
As we show below, our framework readily generalizes to arbitrary income distributions, but the assumption
of normally distributed shocks simplifies the analysis considerably.
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same group is ρw, while between the incomes of any two agents not in the same group it is

ρa < ρw.14 That is, we assume that incomes are more positively correlated within groups

than across groups, so that all else equal, social connections across groups have a higher

potential for risk sharing.

Although we introduce the possibility of correlated incomes in a fairly stylized way, our

paper is one of the first to permit differently correlated incomes between different pairs of

agents. Such correlations are central to the effectiveness of risk-sharing arrangements, as

shown below.

We refer to possible realizations of the vector of incomes as states, and denote a generic

state by ω. We let yi(ω) denote the income realization of agent i in state ω.

Agents can redistribute realized incomes; hence their consumption levels can differ from

their realized incomes. We assume that all agents have constant absolute risk aversion

(CARA) utility functions:

(1) v(ci) = − 1

λ
e−λci ,

where ci is agent i’s consumption and λ > 0 is the coefficient of absolute risk aversion. The

assumption of CARA utilities, together with jointly normally distributed incomes, greatly

enhances the tractability of our model: as we show below it leads to a transferable utility

environment in which the implemented risk-sharing arrangements are relatively simple. This

utility formulation can also be considered a theoretical benchmark case with no income effects.

We generalize the theory in the Supplementary Appendix, Section A.

2.2. Basic network terminology. Before proceeding, we introduce some standard termi-

nology from network theory. A social network L is an undirected graph, with nodes N

corresponding to the different agents, and links representing social connections. Abusing no-

tation we also let L denote the set of links in the network. We will refer to the agents linked

to agent i, N(i;L) := {j : lij ∈ L} ⊂ N, as i’s neighbors. Where there should be no confusion

we abuse notation by writing N(i) instead of N(i;L). The degree centrality of an agent is

simply the number of neighbors she has (i.e., the cardinality of N(i;L)). An agent’s neighbors

can be partitioned according to the groups they belong to. Let Ng(i;L) be i’s neighbors on

network L from group g. A walk is a sequence of different agents {i, k, k′, . . . , k′′, j} such that

every pair of adjacent agents in the sequence is linked. A path is a walk in which all agents

are different. The path length of a path is the number of agents in the path.

We will sometimes refer to subsets of agents S ⊆ N and denote the subgraphs they generate

by L(S) := {lij ∈ L : i, j ∈ S}. A subset of agents S ⊆ N is path-connected on L if, for each

i ∈ S and each j ∈ S, there exists a path connecting i and j. For any network there is a unique

partition of N such that there are no links between agents in different partition elements but

all agents within a partition element are path-connected. We refer to these partition elements

14It is well-known that for a vector of random variables, not all combinations of correlations are possible. We
implicitly assume that our parameters are such that the resulting correlation matrix is positive semidefinite.
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as network components. A shortest path between two path-connected agents i and j is a path

connecting i and j with a lower path length than any other. The diameter of a network

component C ⊂ L is d(C), the maximum value—taken over all pairs of agents in C—of

the length of a shortest path. A network component is a tree when there is a unique path

between any two agents in the component. A line network is the unique (tree) network, up

to a relabeling of agents, in which there is a path from one (end) agent to the other (end)

agent that passes through all other agents. A star network is the unique tree network, up to

a relabeling of agents, in which one (center) agent is connected to all other agents.

2.3. Risk-Sharing Agreements. We assume that income cannot be directly shared be-

tween agents i, j ∈ N unless they are connected, i.e., lij ∈ L. However, we let agents’ income

realizations be publicly observed within their network component, so agents can make trans-

fer arrangements contingent on it. We consider this environment with perfectly observable

incomes within a component as a benchmark model, which is a relatively good description

of village societies in which people closely monitor each other. It is also straightforward to

extend the model so that some income is publicly observed (and shared) while the remain-

ing income is privately observed (and never shared). Results are very similar for this more

general setting.15

Formally, a risk-sharing agreement on a network L specifies transfer tij(ω,L) = −tji(ω,L)

between neighboring agents i and j for every possible state ω. Abusing notation where

there should be no confusion we sometimes drop the second argument and write tij(ω) in-

stead of tij(ω,L). The interpretation is that in state ω agent i is supposed to transfer

tij(ω) units of consumption to agent j if tij(ω) > 0, and receives this amount from agent

j if tij(ω) < 0. Given a transfer arrangement between neighboring agents, agent i’s con-

sumption in state ω is ci(ω) = yi(ω) −
∑

j∈N(i) tij(ω). It is straightforward to show that

state-contingent consumption plans (ci(·))i∈N are feasible, that is they can be achieved by

bilateral transfers between neighboring agents, if and only if for each component C, contained

agents S,
∑

i∈S ci(ω) =
∑

i∈S yi(ω) for every state ω.

A basic assumption we make in our model is that given all other risk-sharing arrangements,

an agreement reached by linked agents i and j must leave no gains from trade on the table.

There must be no other agreement that can make both i and j strictly better off holding

fixed the agreements of other players. We call such transfers pairwise efficient.16

By the well-known Borch rule (see Borch (1962), Wilson (1968)) a necessary and sufficient

condition for this property is that for all neighboring agents i and j,

15Kinnan (2011) finds evidence that hidden income can explain imperfect risk sharing in Thai villages relative
to the enforceability and moral hazard problems we are abstracting from. Cole and Kocherlakota (2001) show
that when individuals can privately store income, state-contingent transfers are not possible and risk sharing
is limited to borrowing and lending.
16More formally, transfers {tij(ω,L)}ω∈Ω, ij:lij∈L are pairwise efficient for a network L if there is no pair of

agents ij : lij ∈ L and no alternative transfers {t′ij(ω,L)}ω∈Ω, ij:lij∈L such that t′kl(ω,L) = tkl(ω,L) for all
kl 6= ij and all ω ∈ Ω, that gives both i and j strictly higher expected utility.
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(2)

(
∂vi(ci(ω))

∂ci(ω)

)/(
∂vj(cj(ω))

∂cj(ω)

)
=

(
∂vi(ci(ω

′))

∂ci(ω′)

)/(
∂vj(cj(ω

′))

∂cj(ω′)

)
for every pair of states ω and ω′. But if this holds for all neighboring agents i and j then

the same condition must hold for all pairs of agents on a component of L, independently

of whether they are directly or indirectly connected. Hence, pairwise-efficient risk-sharing

arrangements are equivalent to Pareto-efficient agreements at the component level. For this

reason, below we establish some important properties of Pareto-efficient risk-sharing arrange-

ments on components.

Proposition 1 shows that the CARA utilities framework has the convenient property that

expected utilities are transferable, in the sense defined by Bergstrom and Varian (1985). This

can be used to show that ex-ante Pareto efficiency is equivalent to minimizing the sum of the

variances, and it is achieved by agreements that in every state split the sum of the incomes

on each network component equally among the members and then adjust these shares by

state-independent transfers. The latter determine the division of the surplus created by the

risk sharing agreement. We emphasize that this result does not require any assumption on

the distribution of incomes, only that agents have CARA utilities.

Proposition 1. For CARA utility functions certainty-equivalent units of consumption are

transferable across agents, and if L(S) is a network component, the Pareto frontier of ex-

ante risk-sharing agreements among agents in S is represented by a simplex in the space of

certainty-equivalent consumption. The ex-ante Pareto-efficient risk-sharing agreements for

agents in S are those that satisfy

min
∑
i∈S

Var(ci) subject to
∑
i∈S
ci(ω) =

∑
i∈S
yi(ω) for every state ω,

and they consist of agreements of the form

ci(ω) =
1

|S|
∑
k∈S

yk(ω) + τi for every i ∈ S and state ω,

where τi ∈ R is a state-independent transfer made to i and
∑
k∈S

τk = 0.

The proof of Proposition 1 is in Appendix I. Proposition 1 implies that the total sur-

plus generated by efficient risk-sharing arrangements is an increasing function of the re-

duction in aggregate consumption variance (the sum of consumption variances). For a

general distribution of shocks, this function can be complicated. However, if shocks are

jointly normally distributed then ci = 1
|S|
∑

k∈S yk + τi is also normally distributed, and

E(v(ci)) = E(ci) − λ
2 Var(ci).

17 Hence in this case the total social surplus generated by

efficient risk-sharing agreements is proportional to the aggregate consumption variance re-

duction. This greatly simplifies the computation of surpluses in the analysis below.

17See, for example, Arrow (1965).
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We use TS(L) to denote the expected total surplus generated by an ex-ante Pareto-efficient

risk-sharing agreement on network L, relative to agents consuming in autarky:

TS(L) := CE
(

∆ Var(L, ∅)
)
,(3)

where, for L′ ⊂ L, ∆ Var(L,L′) is the additional variance reduction obtained by efficient

risk-sharing on network L instead of L′, and CE(·) denotes the certainty-equivalent value of

a variance reduction.

For a network L, consisting of a single component, if all agents are from the same group

then as there are CARA utility functions and normally distributed incomes

(4) TS(L) = CE
(

∆ Var(L, ∅)
)

=
λ

2

(
∆ Var(L, ∅)

)
=
λ

2
(n− 1)σ2(1− ρw) = (n− 1)V,

where V := λ
2σ

2(1− ρw).

2.4. Division of Surplus. The assumption that neighboring agents make pairwise-efficient

risk-sharing agreements pins down agreements up to state-independent transfers between

neighboring agents, but does not constrain the latter transfers (hence the division of surplus)

in any way. To determine these transfers, we follow the approach in Stole and Zwiebel (1996)

and require that agreements are robust to split-the-difference renegotiations. This implies

that the transfer is set in a way such that the incremental benefit that the link provides to

the two agents is split equally between them. This can be interpreted as a social norm. For

a detailed motivation of this assumption, and for noncooperative microfoundations, see Stole

and Zwiebel (1996) and Brügemann et al. (2018a).

Splitting the incremental benefits of a risk sharing link equally between two agents requires

calculating the expected payoffs i and j would receive if they did not have an agreement. We

therefore have to consider what agreements would prevail on the network without lij to find

the risk sharing agreements i and j can reach on L, and so on. This results in a recursive

system of conditions.

More formally, for a network L a contingent transfer scheme

(5) T (L) := {tij(ω,L′)}ω∈Ω, L′⊆L, ij:lij∈L,

specifies all transfers made in all subnetworks of L in all states of the world. The expected

utility of agent i on a network L′ ⊆ L given a contingent transfer scheme T (L) is denoted

ui(L
′, T (L)). Where there should be no confusion, we will abuse notation and drop the

second argument.

For any network L, the expected utility vector (u1, ..., u|N|) is robust to split-the-difference

renegotiation if there is a contingent transfer scheme T (L) such that ui = ui(L, T (L)) for

every i ∈ N and the following conditions hold:

(i) ui(L
′)− ui(L′ \ {lij}) = uj(L

′)− uj(L′ \ {lij}) for every lij ∈ L′ and L′ ⊆ L;

(ii) transfers {tij(ω,L′)}ω∈Ω, ij:lij∈L′ are pairwise efficient for all L′ ⊆ L.
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(a) Line network

2 4 3 

𝑁𝑇𝑆 = 2𝑉 

(b) Three nodes

4 3 

𝑁𝑇𝑆 = 𝑉 

(c) Two nodes

Figure 1. To find (gross) expected utilities that are robust to split-the-
difference renegotiations on the (formed) line network shown we need to con-
sider the expected utilities that would be obtained on all subnetworks.

Suppose all agents are from the same group, we have CARA utilities, incomes are normally

distributed and we want to find payoffs robust to split-the-difference renegotiation for the line

network shown in Figure 1a. A first necessary condition is that agents 1 and 2 benefit equally

from their link so that u1(L)− u1(L \ {l12}) = u2(L)− u2(L \ {l12}). But in order to ensure

this condition is satisfied, we need to know u1(L \ {l12}) and u2(L \ {l12}). Normalizing the

autarky utility of all agents to 0, without the link l12 agent 1 is isolated so u1(L \ {l12}) =

0. However, to find u2(L \ {l12}) we need to find payoffs for the three node network in

Figure 1b. For this network robustness to split-the-difference renegotiation requires that

u2(L\{l12})−u2(L\{l12, l23}) = u3(L\{l12})−u3(L\{l12, l23}). While u2(L\{l23, l23, }) = 0,

we need to consider the two node network shown in Figure 1c to find u3(L \ {l12, l23}). For

this network, payoffs must satisfy u3(L\{l12, l23})−u3(L\{l12, l23, l34}) = u4(L\{l12, l23})−
u4(L \ {l12, l23, l34}). As u3(L \ {l12, l23, l34}) = u4(L \ {l12, l23, l34}) = 0, the above condition

simplifies to u3(L \ {l12, l23}) = u4(L \ {l12, l23}) = V/2, where the last equality follows from

pairwise efficiency. Considering the three node network again, we now have the condition

u2(L \ {l12}) = u3(L \ {l12}) − V/2. As the link l23 generates an incremental surplus of V

to be split between agents 2 and 3, pairwise efficiency implies that u2(L \ {l12}) = V/2 and

u3(L \ {l12}) = V . Finally, returning to the line network, we now have u1(L) = u2(L)− V/2.

As the link l12 generates incremental surplus of V , u1(L) = V/2 and u2(L) = V .18

Below we show that the requirement of robustness to split-the-difference renegotiation

implies that the total surplus created by the risk-sharing agreement is divided among agents

according to the Myerson value (Myerson 1977, 1980). The Myerson value is a cooperative

solution concept defined in transferable utility environments that is a network-specific version

of the Shapley value. The basic idea behind it is the same as for the Shapley value.19 For

any order of arrivals of the players, the incremental contribution of an agent i to the total

18This argument only outlines why the payoffs u1(L) = V/2 and u2(L) = V are necessary for robustness to
split-the-difference renegotiations. By considering all other subnetworks, it can be shown that the payoffs
u1(L) = u4(L) = V/2 and u2(L) = u3(L) = V are the unique payoffs that are robust to split-the-difference
renegotiations.
19We therefore follow Hart and Moore (1990), among others, in using the Shapley value to study investment
decisions.
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surplus can be derived as the difference between the total surpluses generated by subgraph

L(S) and subgraph L(S \ {i}) if agents S \ {i} arrive before i. It is easy to see that, for any

arrival order, the total surplus generated by L gets exactly allocated to the set of all agents.

The Myerson value then allocates the average incremental contribution of a player to the

total surplus, taken over all possible orders of arrivals (permutations) of the players, as the

player’s share of the total surplus. Thus, agent i’s Myerson value is20

(6) MVi(L) :=
∑
S⊆N

(|S| − 1)!(|N| − |S|)!
|N|!

(
TS(L(S))− TS(L(S \ {i}))

)
.

Proposition 2. For any network L, any risk-sharing agreement that is robust to split-

the-difference renegotiation yields expected payoffs to agents equal to their Myerson values:

ui(L) = MVi(L).

Proof. Theorem 1 of Myerson (1980) states that there is a unique rule for allocating surplus

for all subnetworks of L that satisfies the requirements of efficiency at the component level

(note that this is an implicit requirement in Myerson’s definition of an allocation rule) and,

what Myerson (1980) defines as the equal-gains principle. Moreover, the expected payoff the

above rule allocates to any player i is MVi. Requirement (i) in our definition of robustness

to split-the-difference renegotiation is equivalent to the equal-gains principle as defined in

Myerson (1980). Theorem 1 of Wilson (1968) implies that efficiency at the component level

is equivalent to pairwise efficiency between neighboring agents, which is requirement (ii)

in our definition of robustness to split-the-difference renegotiation. The result then follows

immediately from Theorem 1 of Myerson (1980). �

Proposition 2 is a direct implication of Myerson’s axiomatization of the value. A special

case of Proposition 2 is Theorem 1 of Stole and Zwiebel (1996), which in effect restricts

attention to a star network.21 Our contribution is to point out that their connection between

robustness to split-the-difference renegotiations and the Shapley value can be extended to

apply to all networks.22

The above result shows that any decentralized negotiation procedure between neighboring

agents that satisfies two natural properties (not leaving surplus on the table, and robustness

20Our assumption that there is perfect risk sharing among path-connected agents ensures that a coalition of
path-connected agents generates the same surplus regardless of the exact network structure connecting them.
This means that we are in the communication game world originally envisaged by Myerson. We do not require
the generalization of the Myerson value to network games proposed in Jackson and Wolinsky (1996), which
somewhat confusingly is also commonly referred to as the Myerson value. See Ambrus, Gao and Milan (2016)
for a model of informal risk-sharing in which the exact shape of the network matters in terms of the surplus
that agents can attain.
21Relative to Myerson’s axiomatization, Stole and Zwiebel (1996) generate the key system of equations through
considering robustness to renegotiations as we describe above, while Myerson wrote down the system of equa-
tions based only on fairness considerations. Stole and Zwiebel (1996) also provide non-cooperative bargaining
foundations that underpin this system.
22Brügemann et al. (2018b) undertake a related exercise regarding the non-cooperative result in Stole and
Zwiebel (1996)
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to split-the-difference negotiations) leads to the total surplus created by risk-sharing divided

according to the Myerson value, and to state-independent transfers between neighboring

agents that implement this surplus division. Hence, from now on we assume that in the

network formation process, all agents expect the surplus to be divided according to the

Myerson value implied by the network that eventually forms.

Although we followed a decentralized approach to get to the implication that surplus is

divided by the Myerson value, we note that on normative grounds such a division is also cogent

in contexts in which there is a centralized community level negotiation over the division of

surplus. This is because the Myerson value is a formal way of defining the fair share of an

individual from the social surplus, as his average incremental contribution to the total social

surplus (where the average is taken across all possible orders of arrival of different players,

in the spirit of the Shapley value).

In the Supplementary Appendix, Section A, we generalize our model by relaxing the CARA

utility assumption, relaxing the assumption that incomes are normally distributed and con-

sidering a broad class of allocation rules.

3. Investing in Social Relationships

Having defined how formed networks map into risk-sharing arrangements, we can now

consider agents’ incentives to make investments into social capital, which we think of as the

set of relationships that enable risk sharing. We begin by providing the overall framework for

the analysis. Then we look at a special case of our model, in which there is a single group.

Building on these results we then consider the multiple group case.

In this section we formalize a game of network formation in which establishing links is

costly, define efficient networks and identify different types of investment inefficiency.

We consider a two-period model in which in period 1 all agents simultaneously choose

which other agents they would like to form links with, and in period 2 agents agree upon

the ex-ante Pareto-efficient risk-sharing agreement specified in the previous section (i.e., the

total surplus from risk sharing is distributed according to the Myerson value), for the network

formed in the first period.23

Implicit in our formulation of the timing of the game is the view that relationships are

formed over a longer time horizon than that in which agreements are reached about risk

sharing. By the time such agreements are being negotiated, the network structure is fixed,

and investments into forming social relationships are sunk. In addition, as mentioned in the

introduction, the second stage agreements can be viewed as a reduced form treatment of a

dynamic game with many state realizations—as long as the discount factor is high enough,

our agreements will satisfy the required incentive compatibility constraints for an equilibrium.

23For a complementary treatment of network formation when surplus is split according to the Myerson value,
see Pin (2011).
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In period 1 the solution concept we apply to identify which networks form is pairwise

stability. The collection of links formed is social network L, and agent i pays a cost κw > 0

for each link i has to someone in the same group, and κa > κw for each links i has to someone

from a different group. Normalizing the utility from autarky to 0, we abuse notation24 and

let agent i’s net expected utility if network L forms be

(7) ui(L) = MVi(L)− |NG(i)(i;L)|κw −
(
|N(i;L)| − |NG(i)(i;L)|

)
κa.

A network L is pairwise stable with respect to expected utilities {ui(L)}i∈N if and only if

for all i, j ∈ N, (i) if lij ∈ L then ui(L)− ui(L \ {lij}) ≥ 0 and uj(L)− uj(L \ {lij}) ≥ 0; and

(ii) if lij /∈ L then ui(L ∪ lij)− ui(L) > 0 implies uj(L ∪ lij)− uj(L) < 0. In words, pairwise

stability requires that no two players can both strictly benefit by establishing an extra link

with each other, and no player can benefit by unilaterally deleting one of his links. From now

on we will use the terms pairwise-stable and stable interchangeably.

Existence of a pairwise-stable network in our model follows from a result in Jackson (2003),

stating that whenever payoffs in a simultaneous-move network formation game are determined

based on the Myerson value, there exists a pairwise-stable network.

Our specification assumes that two agents forming a link have to pay the same cost for

establishing the link. However, the set of stable networks would remain unchanged if we

allowed the agents to share the total costs of establishing a link arbitrarily.25 This is because

for any link, the Myerson value rewards the two agents establishing the link symmetrically.

Hence the agents can find a split of the link-formation cost such that establishing the link

is profitable for both of them if and only if it is profitable for both of them to form the link

with an equal split of the cost. Given this we stick with the simpler model with exogenously

given costs.

A network L is efficient when there is no other network L′—and no risk sharing agreement

on L′—that can make everyone at least as well off as they were on L and someone strictly

better off. Let |Lw| be the number of within-group links, and let |La| be the number of

across-group links. As expected utility is transferable in certainty-equivalent units, efficient

networks must maximize the net total surplus NTS(L):

NTS(L) := TS(L)− 2|Lw|κw − 2|La|κa,(8)

Clearly, two necessary conditions for a network to be efficient are that the removal of a

set of links does not increase NTS(L) and the addition of a set of links does not increase

24In the previous section when investments had already been sunk we used ui(L) to denote i’s expected payoff
before link formation costs.
25More precisely, we could allow agents to propose a division of the costs of establishing each link as well as
indicating who they would like to link to, and a link would then form only if both agents indicate each other
and they propose the same split of the cost. A network would then be stable if it is a Nash equilibrium of this
expanded network formation game and if there is no new link lij 6∈ L , and some split of the cost of forming
this link, that would make both i and j strictly better off if formed.
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NTS(L). If there exists a set of links the removal of which increases NTS(L), we will

say there is overinvestment inefficiency. If there exists a set of links the addition of which

increases NTS(L), we will say there is underinvestment inefficiency.26 A network is robust to

underinvestment if there is no underinvestment inefficiency and no agent can strictly benefit

from deleting a link that would result in underinvestment inefficiency. A network is robust

to overinvestment if there is no overinvestment inefficiency and no pair of agent i, j can both

strictly benefit from creating the link lij .

We will say that a link lij is essential if after its removal i and j are no longer path-

connected while it is superfluous if after its removal i and j are still path-connected.

Remark 3. Preventing overinvestment requires that all links be essential. Superfluous links

create no social surplus and are costly. In all efficient networks, therefore, every component

must be a tree.

Real world networks among villagers are a long way from being trees. If our model perfectly

captured network formation Remark 3 would imply that there is substantial overinvestment.

However, our model is stylized, and this result needs to be applied with caution. For example,

while there may be overinvestment, our assumption that all links are costly to form is unlikely

to hold. Family ties or the time villagers spend working together might permit relationships

to be formed without any additional investment. We discuss in Appendix II how, what we

view as the main insights of our results, extend to a setting in which some links are free to

form.

In most of the analysis below, we focus on investigating the relationship between stable

networks and efficient networks. Additionally, we investigate the amount of inequality pre-

vailing in equilibria in our model. For this, we will use the Atkinson class of inequality

measures (Atkinson, 1970). Specifically we consider a welfare function W : R|N| → R that

maps a profile of expected utilities into the real line such that

(9) W (u) =
∑
i∈N

f(ui),

where f(·) is assumed to be an increasing, strictly concave and differentiable function. The

concavity of f(·) captures the social planner’s preference for more equal income distributions.

Supposing all agents instead received the same expected utility u′, we can pose the question

what aggregate expected utility is required to keep the level of the welfare function constant.27

In other words we find the scalar u′ : |N|f(u′) =
∑

i∈N f(ui). Letting u = (1/|N|)
∑

i∈N ui

be the mean expected utility, Atkinson’s inequality measure (or index) is given by

26Note that these definitions are not mutually exclusive (there can be both underinvestment and overin-
vestment inefficiency) or collectively exhaustive (inefficient networks can have neither underinvestment nor
overinvestment inefficiency if an increase in the net total surplus is only possible by the simultaneous addition
and removal of edges).
27This exercise is analogous to the certainty equivalent exercise that can be undertaken for an agent facing
stochastic consumption.
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(10) I(f) = 1− u′

u
∈ [0, 1].

We let I be the set (class) of Atkinson inequality measures and note that any I(f) ∈
I equals zero if and only if all agents receive the same expected utility.28 Two different

inequality measures from the Atkinson class can rank the inequality of two distributions

differently. However, certain pairs of distributions are ranked the same way by all members

of the class, such as when one distribution is a mean-preserving spread of the other one.

4. Within-Group Network Formation

In this section we assume that |M| = 1, that is, that agents are ex-ante symmetric, and

any differences in their outcomes stem from their stable positions on the social network. This

will lay the foundations for the more general case considered in the next section.

We begin our investigation by proving a general characterization of the set of stable net-

works. Recall that a path between i and j is a walk in which no agent is visited more

than once. If there are K paths between i and j on the network L, we let P(i, j, L) =

{P1(i, j, L), . . . , PK(i, j, L)} be the set of these paths. For every k ∈ {1, . . . ,K}, let |Pk(i, j, L)|
be the cardinality of the set of agents on the path Pk(i, j, L).29 We can now use these defini-

tions to define a quantity that captures how far away two agents are on a network in terms

of the probability that for a random arrival order they will be connected without a direct

link when the second of the two agents arrives. We will refer to this distance as the agents’

Myerson distance:

(11) md(i, j, L) :=
1

2
−
|P(i,j,L)|∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤|P(i,j,L)|

(
1

|Pi1 ∪ · · · ∪ Pik |

) .

This expression calculates the probability that for a random arrival order the link lij will

be essential immediately after i arrives,30 using the classic inclusion–exclusion principle from

combinatorics. This probability is important because it affects i’s incentives to link to j.

As an illustration, consider the network shown in Panel (A) of Figure 2. The Myerson value

allocates each agent their average marginal contribution to total surplus, where the average

is taken over all possible arrival orders. For example, for the network shown in Figure 2

consider the arrival order 1, 2, 5, 6, 3, 4. When agent 1 is added there are no other agents and

so no links are formed. Thus 1’s marginal contribution to total surplus is 0. Then agent 2 is

added and the link l12 is formed. This link is essential on this network permitting risk sharing

28As f(·) approaches the linear function the social planner cares less about inequality and I(f) → 0. Never-
theless, strict concavity prevents I(f) equaling 0 unless all agents receive the same expected utility.
29For example, for a path Pk(i, j, L) = {i, i′, i′′, j}, |Pk(i, j, L)| = 4 and for a path Pk′(i, j, L) = {i, i′, i′′′, i′′′′, j},
|Pk′(i, j, L)| = 5. Finally, we will let |Pk(i, j, L) ∪ Pk′(i, j, L)| = 5 denote number of different agents on path
Pk(i, j, L) or path Pk′(i, j, L).
30If for a given arrival order, agents S ⊆ N arrive before i, then lij is essential immediately after i arrives if
it is essential on the network L(S ∪ {i}).
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between agents 1 and 2 that wasn’t previously possible. As a result, by equation 4, the total

surplus generated by risk sharing increases from 0 to V . Thus 2’s marginal contribution to

total surplus, for this arrival order, is V . When 5 and 6 are added no new links are formed

and no additional risk sharing is possible—their marginal contributions are 0. However, the

arrival of 3 results in the formation of the links l23, l35 and l36. All of these links are essential

and risk sharing among agents 1, 2, 5, 6 and 3 becomes possible. This increases total surplus

to 4V by equation 4, so 3’s marginal contribution to total surplus is 3V . Finally, adding 4

the links l14 and l45 are formed, and this permits risk sharing to also include 4 increasing

total surplus to 5V . So 4’s marginal contribution to total surplus is V .

1 3 6

4 5

2

(a) Network

1 3 6

4 5

2

(b) Path 1

1 3 6

4 5

2

(c) Path 2

Figure 2. Paths connecting nodes 1 and 6.

Whenever a link is formed that is essential for a given arrival order, it contributes V

to total surplus, while whenever a link is superfluous for a given arrival order, it makes a

marginal contribution of 0 to total surplus.31 Consider now the incentives agent 1 has to

form a superfluous link to agent 6. To calculate this we need to know the probability with

which such a link would be essential for a random arrival order. There are three ways in

which the link l16 might not be essential upon i’s arrival. First, with probability 1/2 agent

6 arrives after agent 1 and the link l16 will be formed on 6’s arrival instead of 1’s. Second,

Path 1 shown in Panel (B) of Figure 2 might be present. This will be the case if and only

if agents 2, 3 and 6 arrive before agent 1. The probability that agent 1 is last to arrive of

these 4 agents is 1/4. Finally, Path 2 shown in Panel (C) of Figure 2 might be present. This

occurs if and only if agents 3, 4 ,5 and 6 arrive before 1. The probability that 1 is last to

arrive of these 5 agents is 1/5.

If these three possibilities were mutually exclusive, then the probability the link l16 would

be formed and essential upon 1’s arrival would be: 1− 1/2− 1/4− 1/5. The probability that

agent 6 arrives after agent 1 is mutually exclusive from the probability that either Path 1 or

Path 2 is present, because both these paths need agent 6 to arrive before agent 1. However,

it is possible for both Path 1 and Path 2 to be formed upon 1’s arrival. Indeed, this occurs

if and only if agent 1 is the last agent to arrive, which happens with probability 1/6. So

the probability that at least one of the two paths to agent 6 is present upon 1’s arrival is

1/4 + 1/5− 1/6. We need to subtract the probability 1/6 to avoid double counting the event

31Note that in the arrival order considered in the preceding paragraph, 4’s marginal contribution to total
surplus would still have been V without the link l14 (l45) as long as the link l45 (l14) was still formed.
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that both paths are present. Thus, the probability that the link l16 will be essential upon 1’s

arrival, is 1− 1/2− 1/4− 1/5 + 1/6 = md(1, 6, L).

Lemma 4. If all agents are from the same group network L is pairwise stable if and only if

(i) md(i, j, L \ {lij}) ≥ κw/V for all lij ∈ L, and

(ii) md(i, j, L) ≤ κw/V for all lij 6∈ L.

The proof is relegated to Appendix I. Recall from equation 3 that the social benefits of

a link is proportional to the variance reduction it generates. For a single group, if a link lij

is essential in the network L ∪ {lij}, then this variance reduction is ∆ Var(L ∪ {lij}, L) =

(1− ρw)σ2.

The crucial feature of this expression is that it does not depend on size of the network

components the link lij connects on L. Although in general the size of these components does

affect the consumption variance, two effects exactly offset each other.32 On the one hand,

in larger components there are more people to benefit from the essential link. On the other

hand, people are already able to smooth there consumption more effectively.

As the social value of a non-essential, or superfluous link, is always zero the total surplus

generated by a network L takes a very simple form. Let Υ(L) be the number of network

components on L. Then

(12) TS(L) = CE
(

∆ Var(L, ∅)
)

=
(
|N| −Υ(L)

)λ
2

(
1− ρw

)
σ2 =

(
|N| −Υ(L)

)
V.

Since the surplus created by any essential link is V , the total gross surplus is equal to this

constant times the number of network component reductions obtained relative to the empty

network.

To consider individual incentives to form links we can use the definition of the Myerson

value and consider the average marginal contribution an agent makes to total surplus over

all possible arrival orders. Specifically, we want to consider the increase in i’s Myerson value

due to a link lij . The link lij will reduce the number of components in the graph by one

when i arrives, relative to the counterfactual component reduction without lij , if and only

if j has already arrived and there is no other path between i and j. In other words, the

link increases i’s marginal contribution to total surplus if and only if it is essential when

i is added. Moreover, for the permutations in which lij is essential it contributes V to i’s

marginal contribution to total surplus. Averaging over arrival order, the value to i of the link

lij ∈ L is md(i, j, L\{lij})V , while the value to establishing a new link lij 6∈ L is md(i, j, L)V .

If a link lij is essential on L then for any arrival order, there will always be a component

reduction of 1 when the later of i or j is added. Therefore, md(i, j, L) = 1/2, and lij will be

32Let L(S1) and L(S2) be the network components of agent i and agent j on network L \ {lij}, and let
|S1| = s1 and |S2| = s2. Then the sum of consumption variances on L(S1) and L(S2) (with Pareto efficient

risk sharing) are s1+s1(s1−1)ρw
s1

σ2 and s2+s2(s2−1)ρw
s2

σ2, respectively. Once S1 and S2 are connected through

lij , the sum of consumption variances on L(S1 ∪ S2) becomes s1+s2+(s1+s2)(s1+s2−1)ρw
s1+s2

σ2. This implies that

the consumption variance reduction induced by the link lij is ∆ Var(L ∪ {lij}, L) = (1− ρw)σ2.
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formed as long as V > 2κw. As V is the social value of forming the link and 2κw is the total

cost of forming it, when all agents are from the same group there is never underinvestment

in a stable network or overinvestment in an essential link.

Proposition 5. If all agents are from the same group then there is never underinvestment

in a stable network. Furthermore, there is never overinvestment in an essential link.

The proof is relegated to Appendix I. When all agents are from the same group Proposition

5 establishes that there is never overinvestment in an essential link, but overinvestment in

superfluous links is possible. If the costs of link formation are low enough then agents will

receive sufficient benefits from establishing superfluous links to be incentivized to do so. Even

if a link lij is superfluous on L, for some arrival orders it will be essential on the induced

subnetwork at the moment when i is added and make a positive marginal contribution to total

surplus.33 An example of such overinvestment is shown in Section B of the Supplementary

Appendix.

An immediate implication of Proposition 5 is that if all agents are from the same group

and 2κw > V then the only stable network is the empty one and this network is efficient,

while if 2κw < V then all stable networks have only one network component (all agents are

path-connected). For the remainder of the paper we focus on the parameter range for which

the empty network is inefficient for a single group and assume 2κw < V . We refer to this as

our regularity condition and omit it from the statement of subsequent results.

Under this regularity condition the set of efficient networks are the set of tree networks

in which all agents are path-connected. In other words, all agents must be in the same

component and all links must be essential. We will now focus on which, if any, of these

efficient networks are stable. As by Proposition 5 there is never any underinvestment in any

stable network the only reason an efficient network will not be stable is if two agents have

a profitable deviation by forming an additional (superfluous) link. We therefore focus on

investigating what network structures minimize incentives for overinvestment. As we will

see, this question is also related to the issue of inequality that different network structures

imply.

Figure 3 illustrates three networks: A line (Figure 3a); a circle (Figure 3b) and a star

(Figure 3c). While the line and star networks are efficient, the circle network is not as it

includes a superfluous link. Among the two efficient networks, the star is more stable than

the line. Applying Lemma 4, whenever the line is stable so is the star but there are parameter

values for which the star is stable and the line is not. While the star is more stable than

the line, it also results in more inequality. The expected utility distribution obtained on the

line network can be generated from that obtained on the star network by the best off agent

(agent 2) transferring (V −2κw)/2 > 0 units of expected utility to one of the worst off agents

(agent 3). This is enough to ensure that the expected utility distribution on the star is more

33Consider, for examples, arrival orders in which i arrives first and j arrives second.
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Figure 3. Three possible network structures for connecting 4 agents and the
resulting net payoffs.

unequal than the expected utility distribution on the line for any inequality measure in the

Atkinson class. We generalize these insights in Proposition 6.

Proposition 6. Suppose all agents are from the same group.

(i) If there exists an efficient stable network then star networks are stable, and for a

non-empty range of parameter specifications only star networks are stable. If a line

network is stable then all efficient networks are stable.

(ii) For all inequality measures in the Atkinson class, among the set of efficient network,

star networks and only star networks maximize inequality, while line networks and

only line networks minimize inequality.

The proof is in Appendix I but we provide some intuition after we discuss the result.

Proposition 6 states that, in a certain sense, among the set of efficient networks the star is the

most stable but maximizes inequality, while the line minimizes inequality but is least stable.

This indicates a novel tension between stability/efficiency and inequality. For example, in

contrast, Pycia (2012) studies when stable coalitional structures exist and finds that stable

coalitions are more likely to exist when the bargaining functions of agents are more equal.

To gain intuition for Proposition 6, recall that Proposition 5 implies that an efficient

network will be stable if and only if no pair of players have a profitable deviation in which

they form a superfluous link. By Lemma 4 the incentives for two agents to form such a link

are strictly increasing in their Myerson distance. Thus, a network is stable if and only if

the pair of agents furthest apart from each other, in terms of their Myerson distance, cannot

benefit from forming a link. As efficient networks are tree networks, the Myerson distance

between any two agents depends only the length of the unique path between them.34 The

longest path between any pair of agents is, by definition, the diameter of the network d(L).

So, an efficient network is stable if and only if its diameter is sufficiently small. More precisely,

34Suppose d is the number of agents on the unique path connecting i and j. The probability that this path
exists when agent i arrives is 1/d. In addition, if agent j has not yet arrived, which occurs with probability
1/2, i would not benefit from the link lij , so i’s expected payoff from forming a superfluous link to j is
(1− 1/2− 1/d)V . We also note that as d gets large, this converges to V/2 which is the value i receives from
forming an essential link.
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an efficient network L is stable if and only if its diameter is weakly less than d(κw, V ), where

d(κw, V ) is increasing in κw, decreasing in V and integer valued.35

Let Le(N) be the set of efficient networks. Star networks have the smallest diameter among

networks within this set, while line networks have the largest diameter among networks within

this set. This establishes part (i) of Proposition 6.

To gain intuition for part (ii) a first step is noting that on any efficient network agents’

net payoffs are proportional to their degrees (i.e., the number of neighbours they have):36

ui(L) = |N(i;L)|(V/2 − κw). The key insight is then showing that for any network in the

set of efficient networks Le(N), the star network can be obtained by rewiring the network

(deleting a link lij ∈ L and adding a link lik 6∈ L) in such a way that at each step we increase

the degree of the agent who already has the highest degree, reduce the degree of some other

agent and obtain a new network in Le(N). This process transfers expected utility to the

agent with the highest expected payoff from some other agent, thereby increasing inequality

for any inequality measure in the Atkinson class. Likewise, we can obtain the line network

from any network in the set Le(N) by rewiring the network to decrease the degree of the

agent with the highest degree at every step. This transfers expected utility from the agent

with the highest expected payoff to some other agent, thereby decreasing inequality for any

inequality measure in the Atkinson class.

To summarize, this section identifies two novel downsides to informal risk sharing agree-

ments. First, they promote a misallocation of villagers time towards excessive social capital

accumulation. Villagers have incentives to form links with a view to becoming more central

within the risk sharing network in order to appropriate a larger share of the surplus gener-

ated by risk sharing. Secondly, even when investments into social capital are efficient the

networks that can be supported in equilibrium generate social inequality, and this translates

into (potentially severe) financial inequality.

5. Connections Across Groups

We now generalize our model by permitting multiple groups. These different groups might

correspond to people from different villages, different occupations, or different social status

groups, such as castes. We will first show that (under our regularity condition) there is still

never any underinvestment within a group. However, this does not apply to links that bridge

groups. As, by assumption, incomes are more correlated within a group than across a group,

there can be significant benefits from establishing such links and not all these benefits accrue

to the agents forming the link. Intuitively, an agent establishing a bridging link to another

group provides other members of his group with access to a less correlated income stream,

which benefits them. As agents providing such bridging links are unable to appropriate all

35We show in the proof of Proposition 6 that d(κw, V ) = b2V/(V − 2κw)c.
36This is also known as an agent’s degree centrality.
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the benefits these links generate, and these links are relatively costly to establish, there can

be underinvestment.

To analyze the incentives to form links within a group, we first need to consider the variance

reduction obtained by a within-group link. Such a link may now connect two otherwise

separate components consisting of arbitrary distributions of agents from different groups.

Suppose the agents in S0 ∪ · · · ∪Sk and the agents in Ŝ0 ∪ · · · ∪ Ŝk form two distinct network

components, where for every i ∈ {0, ..., k}, the agents in Si and those in Ŝi are all from group

i. Consider now a potential link lij connecting the two otherwise disconnected components.

Letting s0 be the number of agents in group 0, the variance reduction obtained is:37

(13) ∆ Var(L ∪ lij , L) =

(1− ρw) +

∑k
i=0

(
ŝi
∑k

j=0 sj − si
∑k

j=0 ŝj

)2(∑k
i=0 si

)(∑k
i=0 ŝi

)(∑k
i=0 si + ŝi

)(ρw − ρa)

σ2.

The key feature of this variance reduction is that it is always weakly greater than (1−ρw)σ2,

which is the variance reduction we found in the previous section when all agents were from

the same group. Thus, the presence of across-group links only increases the incentives for

within-group links to be formed. A within-group link can now give (indirect) access to less

correlated incomes from other groups and so is weakly more valuable. This implies that there

will still be no underinvestment under our regularity condition that 2κw < V .38 The above

reasoning is formalized by Proposition 7.

Proposition 7. There is no underinvestment between any two agents from the same group

in any stable network.

The proof of Proposition 7 is in Appendix I. While underinvestment is not possible within

group, it is possible across groups. An example of this is shown in Section B of the Sup-

plementary Appendix. Although when all agents are from the same group the value of an

essential link does not depend on the sizes of the components it connects, the value of an

essential link connecting two different groups of agents increases in the sizes of the compo-

nents. To demonstrate this formally, consider an isolated group that has no across-group

connections and consider the incentives for a first such connection to be formed. Thus the

first component consist of agents from a single group, say group 0. We let the second compo-

nent consist of agents from one or more of the other groups (1 to k). The variance reduction

obtained by connecting these two components is

37By definition
∆ Var(L ∪ lij , L) = Var(L(S0, ...,Sk)) + Var(L(Ŝ0, ..., Ŝk))−Var(L(S0 ∪ Ŝ0, ...,S ∪ Ŝk)).

Recalling that

Var(L(S0,S1, ...,Sk)) =

(
k∑
i=0

(si + si(si − 1)ρw) + 2ρa

k−1∑
i=0

(si

k∑
j=i+1

sj)

)
σ2

/
k∑
i=0

si ,

some algebra yields the result.
38Recall that this regularity condition just requires that it is efficient for two agents in the same group, both
without any other connections, to form a link.
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(14) ∆ Var(L ∪ lij , L) =

(1− ρw) +

ŝ0

((∑k
i=1 si

)2
+
∑k

i=1 s
2
i

)
(∑k

i=1 si

)(
ŝ0 +

∑k
i=1 si

) (ρw − ρa)

σ2,

which is increasing in ŝ0:

(15)
∂∆ Var(L ∪ lij , L)

∂ŝ0
=

(∑k
i=1 si

)2
+
∑k

i=1 s
2
i(

ŝ0 +
∑k

i=1 si

)2 (ρw − ρa)σ2 > 0.

The inequality follows since ρw > ρa. Thus if agents i and j who connect two otherwise

unconnected groups they receive a strictly smaller combined private benefit than the social

value of the link. To see why, suppose that on the network L the link lij is essential, and

without lij there would be two components, the first connecting agents from group G(i)

and the second connecting agents from group G(j) 6= G(i). Consider the Myerson value

calculation. For arrival orders in which i or j is last to arrive, the value of the additional

variance reduction due to lij obtained upon the arrival of the later of i or j, is the same as

its marginal social value, i.e., the value of variance reduction obtained by lij on L. For any

other arrival order the value of variance reduction due to lij when the later of i or j arrives

is strictly less. Averaging over these arrival orders, the link lij contributes less to i and j’s

combined Myerson values than its social value, leading to the possibility of underinvestment.

Besides underinvestment, overinvestment is also possible across groups. Forming super-

fluous links will increase an agent’s share of surplus without improving overall risk sharing

and can therefore create incentives to overinvest. Nevertheless, when κa is relatively high,

underinvestment rather than overinvestment in across-group links will be the main efficiency

concern. In many settings, within-group links are relatively cheap to establish in comparison

to across-group links. For example, when the different groups correspond to different castes,

it can be quite costly to be seen interacting with members of the other caste (e.g., Srinivas

(1962), Banerjee et al. (2013b)). Motivated by this, and because across-group links are typ-

ically far sparser than within-group links, we focus our attention on this parameter region.

More concretely, below we investigate what within-group network structures create the best

incentives to form across-group links and what network structures minimize the incentives for

overinvestment within group. Remarkably, we find that these two forces push within-group

network structures in the same direction, and in both cases towards inequality in the society.

We begin by considering within-group overinvestment, which corresponds to the formation

of superfluous links within a group. We found in the previous section that when all agents

are from the same group the star is the efficient network that minimized the incentives

for overinvestment. However, once we include links to other groups, the analysis is more

complicated. The variance reduction a within-group link generates is still 0 if the link is

superfluous, but when the link is essential it depends on the distribution of agents across
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the different groups the link grants access to. Moreover, the variance reduction may be

decreasing or increasing in the numbers of people in those groups.39 This makes the Myerson

value calculation substantially more complicated. When all agents were from the same group

all that mattered was whether the link was essential when added. Now, for each arrival order

in which the link is essential, we also need to keep track of the distribution of agents across

the different groups that are being connected. Nevertheless, our earlier result generalizes to

this setting, although the argument establishing the result is more subtle.

To state the result, it is helpful to define a new network structure. A center-connected star

network is a network in which all within-group network structures are stars and all across-

group links are held by the center agents in these stars. We denote the set of center-connected

star networks by LCCS .

Proposition 8. If any efficient network L is robust to overinvestment within group, then

any center-connected star network L′ ∈ LCCS is also robust to overinvestment within group.

Moreover, if L 6∈ LCCS, then for a range of parameter specifications any center-connected

star network L′ ∈ LCCS is robust to overinvestment within group but L is not.

The proof of Proposition 8 is in Appendix I. In Proposition 6 we found that when all

agents are from the same group, incentives for overinvestment (within group) are minimized

by forming a (within-group) star. However, the incentives to form superfluous within-group

links are weakly greater when someone within the group holds an across-group link (see

equation 13). We can therefore think of the incentives for over-investment we found in

Proposition 6 as a lower bound on the minimal incentives we can hope to obtain once there

are across-group links. A key step in the proof of Proposition 8 shows that this lower bound

is obtained by all center-connected star networks.

Consider a center-connected star network L′. As the agent at the center of a within-group

star, agent k, has a link to all agents within the same group, we can focus on the incentives

of two non-center agents from the same group, i and j, to form a superfluous link. Consider

any subset of agents S ⊆ N such that i, j ∈ S. On the induced subnetwork L′(S) either lij is

superfluous or else k 6∈ S. This implies that no across-group links are present whenever the

additional link lij makes a positive marginal contribution. Hence considering different arrival

orders, the average marginal contribution of such a link when it is added is the same on the

star network with no across-group links as for a center-connected star network: The lower

bound on within-group overinvestment incentives is obtained.

We now consider the within-group network structures that maximize the incentives for an

across-group link to be formed. We have already established that the marginal contribution

of a first bridging link to the total surplus is increasing in the sizes of the groups it connects.

By the Myerson calculation, the agents with the strongest incentives to form such links are

39In the case of an essential across-group link that connects agents from just one group to agents from other
groups, the comparative statics are unambiguous. In this case, the variance reduction is increasing in the sizes
of the groups connected (see inequality (15)).
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then those who will be linked to the greatest number of other agents within their group when

they arrive. The result below formalizes this intuition.

Let A(Sk) be the set of possible arrival orders for the agents in Sk. For any arrival order

A ∈ A(S), let Ti(A) be the set of agents to whom i is path-connected on L(S′), where S′ is

the set of agents (including i) that arrive weakly before i. Let T
(m)
i be a random variable,

taking values equal to the cardinality of Ti(A), where A is selected uniformly at random from

those arrival orders in which i is the m-th agent to arrive.

We will say that agent i ∈ Sk is more Myerson central (from now on, simply more central,

for brevity) within his group than agent j ∈ Sk if T
(m)
i first-order stochastically dominates

T
(m)
j for all m ∈ {1, 2, ..., |Sk|}.40 In other words, considering all the arrival orders in which i

is the m-th agent to arrive, and all the arrival orders in which j is the m-th agent to arrive,

the size of i’s component at i’s arrival is larger than that of j’s at j’s arrival in the sense of

first-order stochastic dominance.41 This measure of centrality provides a partial ordering of

agents.

Lemma 9. Suppose agents in S0 form a network component, and all other agents in N form

another network component. Let i, i′ ∈ S0 and let j 6∈ S0. If i is more central within group

than i′, then i receives a higher payoff from forming lij than i′ receives from forming li′j:

MV (i;L ∪ lij)−MV (i;L) > MV (i′;L ∪ li′j)−MV (i′;L).

The proof is relegated to Appendix I. The key step in the proof pairs the arrival orders of

a more central agents with a less central agent, so that in each case the more central agent

is connected to weakly more people in the same group upon his arrival, and to the same set

of people from other groups. Such a pairing of arrival orders is possible from the definition

of centrality, and in particular the first-order stochastic dominance it requires.

Lemma 9 shows that more central agents have better incentives to form intergroup links.

We can then consider the problem of maximizing the incentives to form intergroup links by

choosing the within-group network structures (networks containing only within-group links).

We will say that the within-group network structures that achieve these maximum possible

incentives are most robust to underinvestment inefficiency across groups.

Proposition 10. If any efficient network L is robust to underinvestment across group, then

some center-connected star network L′ ∈ LCCS is also robust to underinvestment across

group. Moreover, if L 6∈ LCCS, then for a range of parameter specifications the center-

connected star network L′ ∈ LCCS is robust to underinvestment across group but L is not.

40We also use this notion of centrality to compare the within-group centrality of the same agent on two
different network structures. To avoid repetition we do not state the slightly different definition that would
apply this situation.
41An alternative and equivalent definition is that i is more central than j if there exists a bijection B : A(Sk)→
A(Sk) such that |Ti(A)| ≥ |Tj(B(A))| and A(i) = A′(j), where A(i) is i’s position in the arrival order A and
A′ = B(P ).
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Figure 4. Center-connected within-group stars, in a context with two groups.

The proof of Proposition 10 is in Appendix I. Intuition can be gained from Lemma 9.

This Lemma shows that agents have better incentives to provide a bridging link across group

when they are more central within their own group. Thus to maximize the incentives of an

agent to provide an across-group link, we need to maximize the centrality of this agent within

group. This is achieved by any network that directly connects this agent to all others in the

same group. However, only one of these within-group network structures can be part of an

efficient network, and this is the star network, with the agent providing the across-group link

at the center.

Figure 4 shows a center-connected star network when there are two groups. As long as

it is efficient for these groups to be connected, center-connected star networks and only the

center-connected star networks minimize the incentives for within-group overinvestment (by

Proposition 9) and minimize the inventives for across-group underinvestment (by Proposition

10).

The above results further reinforce the tension between efficiency and equality. However,

one subtlety relative to the one group case is that while the center-connected star network

maximizes social inequality among all efficient networks with respect to degree distribution,

additional assumptions are required on the parameters of the model to ensure that such

networks maximize income inequality.

6. Testable Predictions

We now turn our attention to how our model might be taken to data. Arguably the main

economic insights of the paper are through the connection between informal risk sharing and

social and economic inequality. With ideal data, these predictions can be tested directly.

However, this requires having income data, consumption data and data detailing risk-sharing

connections all across many networks that are independent from one another. In principle,

this can be done. Viewing each village as a group and collecting information about risk

sharing within village and across village within a confined region constitutes an observation,

and considering many such regions can generate a dataset with sufficient observations for

inference. In this section, we consider two question. First, what might be done with ideal
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data to test the model, and second what can be done with existing data, referencing a recent

paper by Field and Pande (2018).

6.1. Idealized Empirical Setting. We focus on the part of the parameter range for our

model in which across-group links are very expensive to form relative to within-group links,

implying that under-investment rather than over-investment across groups is source of po-

tential inefficiency regarding the formation of across-group risk-sharing relationships. An

example might be that marriages across villages are necessary for effective risk-sharing, while

within village less intense social relationships are sufficient (Rosenzweig and Stark, 1989).

The theory then predicts systematic differences in economic and social inequality, depending

on the environment. These differences come from two difference forces that both push in

the same direction. First, Lemma 9 shows that more Myerson central agents have better

incentives to provide an across-group link. Thus, when across-group links are more valuable,

the incentives for very Myerson central individuals to emerge is stronger. Furthermore, from

the variance reduction given in equation 13, it is straightforward to show that for an essential

across-group bridging link lij :

∂∆ Var(L,L ∪ {lij})
∂σ2

> 0,

∂∆ Var(L,L ∪ {lij})
∂ρa

< 0.

Thus when the variance is higher and the across-group income correlation is lower, the benefits

from investing in a first across group link are stronger and the incentives to form less equal

societies are greater.42

A second force that pushes towards more social and economic inequality, is agents’ incen-

tives to overinvest in within-group links. More social inequality in terms of agents’ Myerson

centralities helps lower Myerson distances between agents, reducing their incentives to over-

invest in local social capital. The incentives to over-invest are again increasing in σ2, and

decreasing in ρa.
43 Predictions P1 and P2 below then follow immediately:

P1. There is more social and economic inequality in regions with higher σ2.

P2. There is more social and economic inequality in regions with lower ρa.

We now elaborate on what would constitute an ideal setting for testing these predictions.

Suppose that there are many rural villages located in many regions, and that the main

economic activity in these villages is farming crops. Further, let risk-sharing be concentrated

within village, with some limited across-village risk-sharing within a region and no risk-

sharing outside across regions. Each region can be treated as a separate observation of

a risk-sharing network structure. Suppose further that all villages within a region farm

42The effect of changing ρw is ambiguous.
43The fact they are decreasing in ρa follows from the proof of Proposition 7. They are also decreasing in
ρw, but as the incentives to form across-group links is ambiguous in ρw the overall effect of changing ρw is
ambiguous.
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the same crop,44 but that these crops are sensitive to rainfall and that the variance in the

amount of rainfall per growing season varies systematically across regions. The difference

in rainfall variation and the crops farmed across regions will generate exogenous variation

in σ2. Suppose too that there is systematic variation in how susceptible regions are to the

transmission of pests and disease across the villages within them, and whether there are

different microclimates within the region. This generates exogenous variation in ρa across

regions. Finally, in this scenario, suppose there is data available over time on the informal

risk-sharing network, villagers’ incomes before risk-sharing and villagers’ incomes after risk

sharing or else their consumption.

Of course, there will still be identification concerns to be overcome. For example, a plau-

sible alternative explanation for prediction P1 is that risk-sharing is far from perfect and

thus that villages with more variable initial incomes before any risk-sharing takes place will

also have less equal incomes after risk-sharing. In cross-sectional data, separating the effects

present in our model from this explanation will be hard. However, having data available

over time it might be possible to decompose the impact of higher income variance on income

inequality into a component that can be attributed to imperfect risk-sharing, and a compo-

nent that can be attributed to unequal risk-sharing arrangements. The key test of the model

would then be whether this second component is statistically and economically significant.

Despite some challenges remaining, the empirical setting we have describe provides ob-

servations at the network level and permits the main economic predictions of the theory

regarding inequality and informal risk-sharing arrangements to be directly tested. Although

at present no such dataset exists to the best of our knowledge, the data available is increasing

rapidly and it is possible such data will become available in the near future.

6.2. Existing Empirical Support. While the ideal dataset is not currently available, Field

and Pande (2018) have nevertheless succeeded in testing some aspects of the theory. They

study a setting in which groups correspond to villages, and there is a fair amount of risk-

sharing across villages. The researchers conduct a randomized controlled trial in which they

pair with a non-governmental organization to introduce microfinance to rural Indian villages.

The data includes 185 villages in Tamil Nadu, India and the randomized introduction of

microfinance across these villages creates exogenous variation in the value of information

risk-sharing. The data does not include information on income, consumption or whom risk-

sharing relationships outside of a given village are with, making it hard to test P1 and P2

directly. Instead the authors test a closely related empirical prediction: Villagers with lower

Myerson centrality have worse incentives to form across-village risk-sharing links. Further,

assuming that the introduction of microfinance into a village reduces the value of an out-

of-village risk sharing link, there will be fewer villagers with sufficient incentives to form an

44If a mix of crops were farmed within a region this would create potentially useful variation in incomes, but
also raise an endogeneity issue as the choices of which crops to farm could be influenced by the risk-sharing
arrangements.



INVESTMENTS IN SOCIAL TIES, RISK SHARING AND INEQUALITY 28

out-of-village link in villages where microfinance has been introduced. Thus the association

between Myerson centrality and maintaining across-group connections should be higher in

treated villages.45

P3. In villages where microfinance has been introduced, there will be a stronger association

between those villagers that have an out-of-village risk-sharing relationship and their

within village Myerson centrality.

Undertaking a regression analysis, with several controls, Field and Pande (2018) find sup-

port for Prediction P3 in their data. The relationship between Myerson centrality and out-

of-village links is significantly more positive in villages that were randomly chosen to receive

formal banking services. As the introduction of microfinance provides truly exogenous vari-

ation, their results provide empirical support for a reduction in the value of outside links

causing there to be a stronger association between agents’ Myerson centralities and their

propensity to have out-of-village risk-sharing links.

7. Conclusion

Our paper provides a relatively tractable model of network formation and surplus division

in a context of risk sharing that allows for heterogeneity in correlations between the incomes

of pairs of agents. Such correlations have a sizeable impact on the potential of informal risk

sharing to smooth incomes. We investigate the incentives for relationships that enable risk

sharing to be formed both within a group (caste or village) and across groups, giving access

to less correlated income streams. We find that overinvestment into social relations is likely

within a group, but there is potential underinvestment into more costly social connections that

bridge different groups. We also find a novel trade-off between equality and efficiency. Thus

we identify new downsides to informal risk sharing arrangements that can have important

policy implications.

Although we focus our analysis on risk sharing, our conclusions regarding network forma-

tion could apply in other social contexts too, as long as the economic benefits created by the

social network are distributed similarly to the way they are in our model—a question that

requires further empirical investigation. Within the context of risk sharing, a natural next

step would be to provide a dynamic extension of the analysis that allows for autocorrelation

between income realizations.

45Other predictions of the model are less amenable to testing. Consider for example the following four
predictions: (1) there are network asymmetries among otherwise observationally similar agents, (2) there is no
underinvestment within groups, (3) agents cannot be too far away from each other (in terms of the Myerson
distance), (4) agents that have across-group links should be more Myerson central within group. Predictions
(2) and (3) depend on an unobservable linking cost parameter and cost heterogeneity would undermine them,
while there are many alternative stories, including ones not directly connected to risk sharing, that generate
similar predictions. For example, if individuals have heterogenous time budgets that are unobserved, and
made random links within and across groups, predictions (1) and (4) are mechanically generated.
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Appendix I. Omitted Proofs

Proof of Proposition 1. To prove the first statement, consider villagers’ certainty-equivalent

consumption. Let K̂ be some constant, and consider the certain transfer K ′ (made in all

states of the world) that i requires to compensate him for keeping a stochastic consumption

stream ci + K̂ instead of another stochastic consumption stream c′i + K̂:

E[v(ci + K̂ +K ′)] = E[v(c′i + K̂)]

− 1

λ
e−λK̂e−λK

′
E[e−λci ] = − 1

λ
e−λK̂E[e−λc

′
i ]

eλK
′

=
E[e−λci ]

E[e−λc
′
i ]

K ′ =
1

λ

(
ln
(
E[e−λci ]

)
− ln

(
E[e−λc

′
i ]
))

(16)

This shows that the amount K ′ needed to compensate i for taking the stochastic consump-

tion stream ci + K̂ instead of c′i + K̂ is independent of K̂. As a villager’s certainty-equivalent

consumption for a lottery is independent of his consumption level, certainty-equivalent units

can be transferred among the villagers without affecting their risk preferences, and expected

utility is transferable.

Next, we characterize the set of Pareto efficient risk sharing agreements. Borch (1962) and

Wilson (1968) showed that a necessary and sufficient condition for a risk-sharing arrangement

between i and j to be Pareto efficient is that in almost all states of the world ω ∈ Ω := R|S|,

(17)

(
∂vi(ci(ω))

∂ci(ω)

)/(
∂vj(cj(ω))

∂cj(ω)

)
= αij

where αij is a constant. Substituting in the CARA utility functions, this implies that

e−λci(ω)

e−λcj(ω)
= αij

ci(ω)− cj(ω) = − ln(αij)

λ

E[ci(ω)]−E[cj(ω)] = − ln(αij)

λ
ci(ω)− cj(ω) = E[ci(ω)]−E[cj(ω)](18)

Letting i and j be neighbors such that j ∈ N(i), equation 18 means that when i and

j reach any Pareto-efficient risk-sharing arrangement their consumptions will differ by the

same constant in all states of the world. Moreover, by induction the same must be true for

all pairs of path-connected villagers.

Consider now the problem of splitting the incomes of a set of villagers S in each state of

the world to minimize the sum of their consumption variances:
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(19) min
c

∑
i∈S

Var(ci) subject to
∑
i∈S

yi(ω) =
∑
i∈S

ci(ω) for all ω.

If we denote a CDF of income probability distribution on Ω = R|S| by F (·),

(20)
∑
i∈S

Var(ci) =

ˆ

Ω

∑
i∈S

(ci(ω)−E[ci])
2dF (ω).

Since Var(ci(ω) + ai) = Var(ci(ω)), the sum of variances is invariant to state-independent

changes in a consumption profile, and the variance-minimizing consumption profile exists for

any profile of expected consumptions {E[ci]}i∈S:
∑

i∈S E[ci] =
∑

i∈S E[yi]. Fix any such

profile of expected consumptions, {E[ci]}i∈S. Similarly to Wilson (1968), we apply Theorem

1 from Zahl (1963) to our minimization problem. We denote a Lagrange multiplier attached

to constraint
∑

i∈S yi(ω) =
∑

i∈S ci(ω) by γ(ω). Then, the corresponding Lagrangian of the

problem is

ˆ

Ω

[∑
i∈S

(ci(ω)−E[ci])
2 − γ(ω)

∑
i∈S

ci(ω)

]
dF (ω).

By pointwise minimization with respect to ci(ω) we obtain that for each i ∈ S and almost

every ω ∈ Ω, 2(c∗i (ω) − E[ci]) = γ(ω). Thus, c∗i (ω) − c∗j (ω) = E[ci(ω)] − E[cj(ω)] for all

i, j ∈ S. Note that this equality as well implies that E[c∗i (ω)] = E[ci], and {c∗i (ω)} indeed

solves the minimization problem. Thus, the condition c∗i (ω) − c∗j (ω) = E[ci(ω)] − E[cj(ω)]

for almost all ω is exactly the same as the necessary and sufficient condition for an ex-ante

Pareto efficiency. Hence, a risk-sharing agreement is Pareto efficient if and only if the sum of

the consumption variances for all path-connected villagers is minimized.

Using the necessary and sufficient condition for efficient risk sharing, we obtain

(21)
∑
k∈S

yk(ω) =
∑
k∈S

ck(ω) = |S|ci(ω)−
∑
k∈S

(E[ci(ω)]−E[ck(ω)]) ,

which implies that

(22) ci(ω) =
1

|S|
∑
k∈S

yk(ω) +
1

|S|
∑
k∈S

(E[ci(ω)]−E[cj(ω)]) =
1

|S|
∑
k∈S

yk(ω) + τi,

where τi = E[ci(ω)]−E[ 1
|S|
∑

k∈S yk(ω)]. �

Proof of Lemma 4. Agent i’s net benefit from forming link lij is (MVi(L)−MVi(L \ {lij})−
κw). We need to show that

(23) MVi(L)−MVi(L \ {lij}) = MVj(L)−MVj(L \ {lij}) = md(i, j, L)V.
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Some additional notation will be helpful. Suppose agents arrive in a random order, with a

uniform distribution on all possible arrival orders. The random variable Ŝi ⊆ N identifies the

set of agents, including i, who arrive weakly before i. For each arrival order, we then have an

associate network LL(Ŝi) that describes the network formed upon i’s arrival (the subnetwork

of L induced by agents Ŝi). Let q(i, j, L) be the probability that i and j are path-connected

on network LL(Ŝi).

The certainty-equivalent value of the reduction in variance due to a link lij in a graph

LL(Ŝi) is V if the link is essential and 0 otherwise. The change in i’s Myerson value, MVi(L)−
MVi(L \ {lij}), is then (q(i, j, L)− q(i, j, L \ {lij}))V . However, q(i, j, L) = 1/2. To see this,

note that lij ∈ L and therefore in every order of arrival in which i arrives after j (which

happens with probability 1/2), i and j are path-connected on the network LL(Ŝi), while i

and j are never path-connected on LL(Ŝi) when j arrives after i.

Probability q(i, j, L \ {lij}) can be computed by the inclusion-exclusion principle, using

the fact that the probability of a path connecting i and j existing on network LL\{lij}(Ŝi) is

equal to the probability that for some path connecting i and j on L \ {lij} all agents on the

path are present in Ŝi. Thus

(24) q(i, j, L \ lij) =

|P(i,j,L\lij)|∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤|P(i,j,L)|

(
1

|Pi1 ∪ · · · ∪ Pik|

) .

We therefore have that

(25) MVi(L)−MVi(L \ lij) = (1/2− q(i, j, L \ lij))V = md(i, j, L)V,

where the last equality follows from the definition of Myerson distance.

�

Proof of Proposition 5. For there to be underinvestment in a pairwise-stable network L, there

must exist a link lij 6∈ L for which TS(L∪ lij)− TS(L) > 2κw. This can only happen if lij is

essential on L∪ lij as otherwise TS(L∪ lij)−TS(L) = 0. Thus TS(L∪ lij)−TS(L) = V and

so V > 2κw. As lij 6∈ L and L is pairwise stable, Lemma 4 implies that md(i, j, L) ≤ κw/V .

However, as lij is essential on L ∪ lij , md(i, j, L) = 1/2. Substituting this into the condition

from Lemma 4 we get V ≤ 2κw, leading to a contradiction.

For the second part of the proposition, let L be a pairwise-stable network and let lij ∈ L be

an essential link on L in which there is overinvestment. Thus TS(L)− TS(L \ {lij}) = V <

2κw. Since lij is essential, md(i, j, L \ {lij}) = 1/2. But Lemma 4 implies that md(i, j, L \
{lij}) ≥ κw/V . We therefore have that V ≥ 2κw, leading to a contradiction. �

Proof of Proposition 6.
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Part (i): By remark 3 and under our regularity condition, all efficient networks are tree

networks. By definition, in all tree networks any pair of agents i and j have a unique path

between them. Thus, for a tree network L with diameter d(L), there exist agents i and j

with a unique path between them of length d(L) and all other pairs of agents have a weakly

shorter path between them. Thus by equation 11:

(26) md(i, j, L) =
1

2
− 1

d(L)
≥ md(k, k′, L) for all k, k′ ∈ N.

By Proposition 5 there is no underinvestment in any stable network. Lemma 4 therefore

implies that the efficient network L is stable if and only if md(k, k′, L) ≤ κw/V for all k, k′

such that lkk′ 6∈ L. As md(i, j, L) ≥ md(k, k′, L) and md(i, j, L) = 1/2−1/d(L) (see equation

26), this condition simplifies and the efficient network L is stable if and only if

(27)
V − 2κw

V
≤
(

2

d(L)

)
.

As d(L) gets large, the right-hand side converges from above to 0 and so in the limit, the

condition for stability becomes V ≤ 2κw, which is violated by our regularity condition. Thus,

there exists a finite d(L) such that the efficient network L is stable if and only if d(L) ≤ d(L).

Rearranging equation 27, L is stable if and only if

(28) d(L) ≤ 2

(
V

V − 2κw

)
.

So the key threshold is d(κw) = b2V/(V − 2κw)c.
Fixing the number of agents |N| in an efficient (tree) network L, the star network is the

unique (tree) network (up to a relabeling of players) that minimizes the diameter d(L) while

the line network is the unique (tree) network (up to a relabeling of players) that maximizes

the diameter d(L). The result now follows immediately.

Part (ii): On any efficient networks all links are essential and generate a net surplus

of V − 2κw > 0, where the inequality follows from our regularity condition. As i and j

must benefit equally at the margin from the link lij (see condition (ii) in the definition of

agreements that are robust to split-the-difference renegotiation), agent i’s expected payoff on

an efficient network L is

(29) ui(L) = |N(i;L)|(V/2− κw) > 0.

Thus i’s net payoff is proportional to his degree.

For any tree network L other than the star network let agent k be one of the agents with

the highest degree. Consider a link lij ∈ L such that i, j 6= k. As L is a tree there is a unique

path from i to k and a unique path length from j to k. As we are on a tree network, either

the path from j to k passes through i, or else the path from i to k passes through j. Hence

either i or j is closer to k and without loss of generality we let i have a longer path to k

than j. We now delete the link lij and replace it with the link lik. This operation generates
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a new tree network. Moreover, repeating this operations until there are no links lij such that

i, j 6= k, defines an algorithm.

This algorithm terminates at star networks as the operation cannot be applied to this

network; There are no links of lij such that i, j 6= k. Moreover the operation can be applied

to any other tree network because on all other tree networks there exists an lij such that

i, j 6= k. Finally, in each step of the algorithm the degree of k increases and so the algorithm

must terminate in a finite number of steps. Moreover, the algorithm must terminates at the

star network with k at the center.

By construction, at each step of the above algorithm we decrease the degree of some agent

j 6= k and increase the degree of k. Suppose we start with a network L and consider a step of

this rewiring where the link lij is deleted and replaced by the link lik. Only the expected payoff

of agents j and k on L and L∪lik \ lij change; The degrees of all other agents remain constant

and thus by equation 29 so do their payoffs. Letting α = (V/2−κw), we have uj(L) = αdj(L),

uk(L) = αdk(L), uj(L ∪ lik \ lij) = α(dj(L)− 1) and uk(L ∪ lik \ lij) = α(dk(L) + 1).

It follows that welfare W (u) =
∑

i f(ui) (see equation 9) decreases through the rewiring

in this step if and only if

(30) f(α(dj − 1)) + f(α(dk + 1))− f(αdj)− f(αdk) < 0,

which is equivalent to:

(31) f(α(dk + 1))− f(αdk) < f(αdj)− f(α(dj − 1))

As f(·) is increasing, strictly concave and differentiable f ′(αdj)α < f(αdj)− f(α(dj − 1))

and f ′(αdk)α > f(α(dk + 1)) − f(αdk). Moreover, by concavity f ′(αdj) ≥ f ′(αdk) (as

dk ≥ dj). Combining these inequalities establishes the claim that f(α(dk + 1)) − f(αdk) <

f(αdj)− f(α(dj − 1)).

Thus at each step of the rewiring welfare W (u) decreases. For each network L′ reached

during the algorithm we can consider the average expected utility u′(L′) which if distributed

equally would generate the same level of welfare as obtained on L. As aggregate welfare is

decreasing at each step of the rewiring u′(L) must be decreasing too. However, the total

surplus generated by risk sharing remains constant and so average expected utility u remains

constant. Recall that Atkinson’s inequality measure / index is given by I(L) = (1−(u′(L)/u).

Thus at each step of the rewiring the inequality measure I(L) increases. As this rewiring

can be used to move from any tree network to the star network, stars network and only star

networks maximize inequality among the set of tree networks, which correspond to the set

of efficient networks under our regularity condition. As this argument holds for any strictly

increasing and differentiable, concave function f it holds for all inequality measures in the

Atkinson class.

Consider now an alternative rewiring of a tree network L. Let k be one of the agents with

highest degree on L and let j be one of the agents with degree 1 on L. As tree networks
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contain no cycles, there always exists agents with degree 1 (leaf agents). Pick one of k’s

neighbors i ∈ N(k;L), remove the link lik from L and add the link lij to L. This operation

generates a new tree network. Repeating this operation until the highest degree agent has

degree 2 defines an algorithm. As the unique tree network with a highest degree of 2 is the

line network, the algorithm terminates at line networks and only line networks. At each stage

of the rewiring we either reduce the degree of the highest degree agent k or reduce the number

of agents who have the highest degree. Thus the algorithm must terminate in a finite number

of steps at a line network. Moreover, reversing the argument above, inequality is reduced at

each step of the rewiring for any inequality measure in the Atkinson class.

�

Proof of Proposition 7. By definition, underinvestment within group for a network L requires

that there exists an lij 6∈ L such thatG(i) = G(j) and for which TS(L∪lij)−TS(L) > 2κw. As

TS(L∪lij)−TS(L) = 0 for all non-essential links, lij must be essential on L∪{lij}. Thus lij is

also essential on L̂∪{lij} for any L̂ ⊆ L. Equation 13 then implies that TS(L̂∪lij)−TS(L̂) ≥
V for any L̂ ⊆ L.

Consider any arrival order in which i arrives after j and let Si be the agents that arrive

(strictly) before i. Agent i’s marginal contribution to total surplus without lij when i arrives

is then TS(L(Si∪{i}))−TS(L(Si)) while with lij it is TS(L(Si∪{i})∪{lij})−TS(L(Si)). So

i’s additional marginal contribution to total surplus when lij has been formed is TS(L(Si ∪
{i}) ∪ {lij}) − TS(L(Si ∪ {i})). As L(Si ∪ {i}) ⊆ L, by the above argument TS(L(Si ∪
{i}) ∪ {lij}) − TS(L(Si ∪ {i})) ≥ V . As i arrives after j in half the arrival orders, i’s

average additional incremental contribution to total surplus when lij has been formed is

at least V/2. Thus MVi(L ∪ {lij}) −MVi(L) ≥ V/2. An equivalent argument establishes

that MVj(L ∪ {lij}) −MVj(L) ≥ V/2. Under our regularity condition V/2 > κw and so

i and j have a profitable deviation to form lij and the network L is not stable. As L was

an arbitrary network within underinvestment within group, there is no stable network with

underinvestment within group. �

Proof of Proposition 8. The proof of the first part of the statement has four steps.

Step 1: Consider any efficient network L that is robust to overinvestment inefficiency

within group. This implies that for all path-connected agents i, j such that G(i) = G(j)

and lij 6∈ L, either MVi(L ∪ {lij}) − MVi(L) ≤ κw or MVj(L ∪ {lij}) − MVj(L) ≤ κw.

However, by condition (i) in the definition of agreements that are robust to split-the-difference

renegotiation, MVi(L ∪ {lij}) −MVi(L) = MVj(L ∪ {lij}) −MVj(L) and so both MVi(L ∪
{lij})−MVi(L) ≤ κw and MVj(L ∪ {lij})−MVj(L) ≤ κw.

Step 2: Let a network L̂ := {lij : G(i) = G(j), lij ∈ L} be a network formed from L by

deleting all across-group links. Consider any subset of agents S ⊆ N such that i, j ∈ S. As
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the network L is efficient, it is a tree network that minimizes the number of across-group

links conditional on a given set of agents being in a component. This implies that the unique

path between i and j cannot contain an across-group link. So, i is path-connected to j on the

induced subnetwork L(S) if and only if i is path-connected to j on the induced subnetwork

L̂(S). Thus, by equation 13, the additional variance reduction that i and j can now achieve

by forming a superfluous across-group link on L̂(S) is weakly lower than on L(S). So, by the

Myerson value definition (equation 6), MVi(L̂∪ {lij})−MVi(L̂) ≤MVi(L∪ {lij})−MVi(L)

and MVj(L̂ ∪ {lij})−MVj(L̂) ≤MVi(L ∪ {lij})−MVi(L). This implies that L̂ is robust to

overinvestment within group.

Step 3: Let a network L̂′ be a network formed from L̂ by rewiring (alternately deleting

then adding a link) each within-group network into a star (for an algorithm that does this,

see the part (ii) of the proof of Proposition 6). Consider any two agents i′, j′ such that

G(i′) = G(j′), li′j′ 6∈ L̂′. By part (i) of Proposition 6, MVi′(L̂
′ ∪ {li′j′}) − MVi′(L̂

′) ≤
MVi(L̂ ∪ {lij}) −MVi(L̂) and MVj′(L̂

′ ∪ {li′j′}) −MVj′(L̂
′) ≤ MVj(L̂ ∪ {lij}) −MVj(L̂).

Thus L̂′ is robust to overinvestment within group.

Step 4: Finally, consider any network L′ ∈ LCSS . This network can be formed by adding

a set of across-group links to a network L̂′ such that L̂′ ⊆ L′ and if lkk′ ∈ L′ \ L̂′ then

G(k) 6= G(k′). Consider any subset of agents S′ ⊆ N such that i′, j′ ∈ S′. Recall that

G(i′) = G(j′) and note that by the construction of L′, li′j′ 6∈ L′. On the induced subnetwork

L′(S′), either i′ is path-connected to j′, in which case li′j′ would be superfluous if added,

or else i′ and j′ are isolated nodes. This is because the within-group network structure for

group G(i′) is a star. Thus, whenever li′j′ would not be superfluous, the change in i′ and

j′’s Myerson value if it were added is independent of the across-group links that are present:

MVi′(L
′∪{li′j′})−MVi′(L

′) = MVi′(L̂
′∪{li′j′})−MVi′(L̂

′) and MVj′(L
′∪{li′j′})−MVj′(L

′) ≤
MVj′(L̂

′ ∪ {li′j′})−MVj′(L̂
′). Thus L′ is robust to overinvestment within group.

We turn now to the second part of the result. If L 6∈ LCCS , then there will be agents

i, j such that G(i) = G(j) and lij 6∈ L such that either the within-group network structure

for G(i) is not a star, or else it is a star but there are across-group links being held by an

agent who is not the center agent. In the first case, the inequality in step 3 will be strict

by Proposition 6. In the second case, we can without loss of generality let agent i be the

non-center agent holding the across-group link. Then, by equation 13, the inequality in step 2

will be strict. Thus for some parameter values L will not be robust to overinvestment within

group, but L′ will be. �

Proof of Lemma 9. Denote the set of all possible arrival orders for the set of agents N, by

A(N). Order this set of |N|! arrival orders in any way, denoting the kth arrival order by

Âk ∈ A(N). We will then construct an alternative ordering, in which we denote the kth

arrival order by Ãk ∈ A(N), such that for arrival order Ãk,

(i) i arrives at the same time as agent i′ does for the arrival order Âk;
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(ii) when i arrives he connects to exactly the same set of agents from N \ S0 that i′

connects to upon his arrival for the arrival order Âk;

(iii) when i arrives he connects to weakly more agents from S0 that i′ connects to upon

his arrival for the arrival order Âk.

Equation 15 shows that the risk reduction, and hence the marginal contribution made by

an agent k ∈ S0 from providing the across-group link lkj , is an increasing function of the

component size of k’s groups. It then follows that

(32) MV (i;L ∪ lij)−MV (i;L) > MV (i′;L ∪ li′j)−MV (i′;L).

To construct the alternative ordering of the set A(N) as claimed we will directly adjust

individual arrival orders, but in a way that preserves the set A(N). First, for each arrival

order, we switch the arrival positions of i′ and i. This alone is enough to ensure that conditions

(i) and (ii) are satisfied. There are |S0|! possible arrival orders for the set of agents S0.

Ignoring for now the other agents, we label these arrival orders lexicographically. First we

order them, in ascending order, by when i arrives. Next, we order them in ascending order

by the number of agents i is connected to upon his arrival. Breaking remaining ties in any

way, we have labels 1i, 2i, . . . , |S0|!i. We then let every element of A(N) inherit these labels,

so that two arrival orders receive the same label if and only if the agents S0 arrive in the

same order. We now construct a second set of labels by doing the same exercise for i′, and

denote these labels by 1i′ , 2i′ , . . . , |S0|!i′ . We are now ready to make our final adjustment

to the arrival orders. For each original arrival order Âk we find the associated (second)

label. Suppose this is xi′ . We then take the current kth arrival order (given the previous

adjustment), and reorder (only) the agents in S0, so that the newly constructed arrival order

now has (first) label xi. Because of the lexicographic construction of the labels, the arrival

position of agent i will not change as a result of this reordering of the arrival positions of

agents in S0, so conditions (i) and (ii) are still satisfied. In addition, condition (iii) will now

be satisfied from the definition of i being more central than i′. The only remaining thing

to verify is that the set of arrival orders we are considering has not changed (i.e. that we

have, as claimed, constructed an alternative ordering of the set A(N)) and this also holds by

construction. �

Proof of Proposition 10. Let L be an efficient network that is robust to underinvestment

across group. This implies that for any across-group link lij ∈ L between groups g = G(i)

and ĝ = G(j) 6= g, MVi(L) −MVi(L \ {lij}) = MVj(L) −MVj(L \ {lij}) ≥ κa, where the

inequality follows from condition (i) in the robustness to split-the-difference renegotiations

definition.

We now rewrite L. As the network L is efficient, it is a tree network that minimizes the

number of across-group links conditional on a given set of agents being in a component. This

implies that the unique path between any two agents from the same group cannot contain
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an across-group link. We can therefore rewrite the within-group network structures of L to

obtain a star by sequentially deleting and then adding within-group links (an algorithm that

does this is presented in the proof of part (ii) of Proposition 6). Do this rewiring so that agent

i is the agent at the center of the within-group network for group G(i) and let j be the agent

at the center of the within-group network for group G(j). Finally, we rewire across-group

links so that the same groups remain directly connected, but all across-group links are held

by the center agents. Let the network obtained be L′. By construction, L′ ∈ LCCS .

Under our definition of Myerson centrality, it is staightforward to verify that both i and

j are weakly more Myerson central within their respective groups on network L′ than on

network L. An argument almost identical to that in the proof of Lemma 9 then implies that

i′ and j′ have better incentives to keep the link li′j′ than i and j have to keep the link lij

(because the argument is more or less identical we skip it). Hence,

MVi′(L)−MVi′(L \ {li′j′}) ≥ MVi(L)−MVi(L \ {lij})(33)

MVj′(L)−MVj′(L \ {li′j′}) ≥ MVj(L)−MVj(L \ {lij})(34)

Network L′ is therefore robust to underinvestment. Moreover, whenever the within-group

networks of i and j on network L are not both stars with i and j at the centers, the inequality

is strict because both i and j are strictly more Myerson central within-group on L′ than on

L. There then exists a range of parameter specifications for which any center-connected star

network L′ ∈ LCCS is robust to underinvestment across group but L is not. �

Appendix II. Permitting some free links

In our model we assume that each link costs a fixed amount to form, but in practice,

certain relationships will already exist permitting risk sharing without any investment. We

now permit this possibility by assuming that there are a set of within-group links that can be

formed for free. These links might represent family relationships or close friendships formed

in childhood. Within this context we re-examine the structure of efficient networks, and those

networks that are most stable to underinvestment and overinvestment.

More formally, we let L̂ denote the set of within group links that can be formed for free.

As, by the Myerson Value calculation, a link strictly increases the expected utility an agent

receives in a risk sharing arrangement, we let all such links be always formed. The network L̂

will consist of a set of components, each of which contains agents from the same group. For

each such component C, we identify an agent i∗(C) ∈ argmini maxjmdij(C). This is agent

who has the lowest maximum Myerson Distance to any other agent in the component C. We

will refer to agent i∗(C) as the Myerson distance central agent in component C and let Ci

denote the component to which i belongs. Considering all components, we then have a set
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of Myerson distance central agents I∗ = (i∗(C))C . Finally, we identify a Myerson distance

central agent associated with the largest distance, i∗∗ ∈ argmaxi∗∈I∗ maxj∈Ci∗ mdi∗j .

When there is one group, we dub a network generated by forming all free links, and the

links li∗i∗∗ for all i∗ 6= i∗∗ a central connections network.

Suppose there are k different groups and k′ ≥ k initial components. The set of efficient

network then comprises of the set of networks in which all free links are formed, k − 1

across group links are formed and k′ − k within group links are formed, such that a there

is a single component. This is the lowest cost way to form a single component, and by

assumption it is efficient for all agents to risk share with each other.46 We now consider those

efficient networks that are most robust to underinvestment. When there is one group, central

connections networks are always efficient. They are are also most stable within the class of

efficient networks.

Proposition 11. Suppose there is one group. If any efficient network is stable, then all

central connections networks are also stable.

Proof. Consider two components C and C ′. For two agents i, j in component C, recall that

md(i, j, C) equals 1/2 less the probability that a path exists between i and j on C upon the

arrival of i. Suppose now we take two components C and C ′. Let agents i, k be in component

C and agents j, k′ be in component C ′, and form the bridging link lkk′ . The probability a

path exists between i and j upon i’s arrival is now is equal to the probability that a path

exists between i and k on C multiplied by the probability that a path exists between k′ and

j on C ′. This is because these events are independent, and when both path exist agents k

and k′ must have arrived before i and so the link lkk′ must be present. It follows that

argmax
i,j

mdij(C ∪ C ′ ∪ {lkk′}) = {i, j : i ∈ argmax
l

mdlk(C), j ∈ argmax
l

mdlk′(C
′)}.

Thus the network generated by forming all free links, and the links li∗i∗∗ for all i∗ 6= i∗∗

minimizes the maximum Myerson distance on an efficient network and, by Lemma 4, is stable

if any other efficient network is stable. �

Proposition 11 shows that when some within-group are formed for free, the most stable

efficient network continues to create additional links that increase the centrality of the most

central agents.

When there are multiple groups, central connections networks within group with the agent

i∗∗ providing the across group link(s) continue to work well. With multiple groups, agents’

incentives to form superfluous within-group links depend on two things. First, as before,

whether the link will be essential for a random arrival order, and second, unlike before,

46As before, the same set of risk sharing arrangements can be implemented on any given component, and
as expected utility is transferable, given that formation costs have been minimized, any point on the Pareto
frontier can be obtained.
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how many agents from other groups the link provides access to upon i’s arrival when it is

essential. Incentives to form a superfluous within-group links are increasing in the number of

agents from other groups the link provides access to, and decreasing in the number of agents

within-group the link provides access to. These considerations make superfluous links to the

agent providing the across group link(s) particularly valuable. However, by construction the

network generated by forming a central connections network within-group, with the agent i∗∗

providing the across group link(s), minimizes the maximum probability that a superfluous

link to the agent providing the across group link(s) will be essential for a random arrival

order. It thus minimizes the maximum incentives for an agent to form a superfluous link

within-group to the agent providing the across group link(s).

Considering the incentives within a group to efficiently form an across-group essential

link, a central connections networks within-group is also likely to do well. By Lemma 9

more Myerson central agents have better incentives to form across group links. While central

connections networks maximize a slightly different notion of the centrality of the most central

agent, in this case agent i∗∗, these measures of centrality are likely to be highly correlated.

We therefore expect central connections networks within-group to provide relatively good

incentives for across group links to be formed




