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Abstract

The primary objective of the paper is twofold. First, to answer the ques-

tion posed in the title by arguing that the conundrums: [C1] the non-standard

sampling distributions, [C2] the low power of unit-root tests, [C3] the two

competing parametrizations of the AR(1) models, (B) =0+1−1+, (C)
=0++1−1+, and [C4] the incompleteness and non-testability of the
error term  assumptions, originate in viewing such models as stochastic differ-

ence equations where one aPriori Postulates (aPP): hai their functional form,
hbi the range of values of their unknown parameters, and hci their error term 
assumptions. The key culprit behind [C1] and [C2] is 1∈[−1 1] in hbi entailing
hdi the AR(1) nests the Unit Root [UR(1)] model for 1=1, which belies Kol-
mogorov’s existence theorem. Second, to bring out explicitly the well-defined

(existence theorem holds) statistical models corresponding to the AR(1): (B)-

(C) models using R.A. Fisher’s statistical perspective. This perspective reveals

that there is no well-defined stochastic process { ∈N:=(1 2 )} underlying
both the AR(1) and the related UR(1) model. Instead, the statistical AR(1)

and UR(1) models are (i) grounded on two distinct processes { ∈N}, based
on (ii) different probabilistic assumptions and (iii) statistical parametrizations,

(iv) rendering them non-nested, and (v) their respective likelihood-based in-

ferential components are free from conundrums [C1]-[C4]. These ‘outlandish’

claims are affirmed by analytical derivations, simulations, as well as proposing a

non-stationary AR(1) model that nests the related UR(1) model, where testing

1=1 relies on likelihood-based tests that are free from conundrums [C1]-[C2].

KEYWORDS: Autoregressive models; stochastic difference equations; Dickey-

Fuller unit root testing; non-standard sampling distributions; Brownian mo-

tion process; cointegration; statistical vs. apriori postulated (aPP) perspec-

tive/model; nested vs. non-nested models; statistical adequacy.
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1 Introduction
1.1 Statistical analysis of time series in the 20th century
The statistical analysis of time series data has undergone several important paradigm

shifts during the 20th century, changing greatly how such data are modeled and used

for inference purposes; see Mills (2011).

The first quarter of the 20th century was dominated by descriptive statistics in

the form of summarizing key features of the data such as means, variances, correla-

tions, autocorrelations, histograms, periodograms as well as attempts to quantify or

eliminate trends and cycles exhibited by data; see Yule and Kendall (1950).

The first model-based approach, beyond descriptive statistics, was initiated by

Yule (1927) putting forward the AutoRegressive of order  [AR(p)] model:

AR(p): =0+
P

=1 −+ vNIID(0 2) ∈N:=(1 2   ) (1)

and Slutsky (1927) proposing the Moving Average of order  [MA()] model:

MA(q): =0+
P

=1 −+ vNIID(0 2) ∈N (2)

where ‘NIID(0 2)’ stands for ‘Normal, Independent and Identically Distributed’ with

mean 0 and variance 2. The specifications in (1) and (2) are viewed as aPriori

Postulated (aPP) models that could have given rise to data y0:=(1 2  ).

Wold (1938) combined the AR(p) and MA(q) models into the ARMA(p,q) model:

ARMA(p,q): =0+
P

=1 −+
P

=1 −+ vNIID(0 2) ∈N (3)

This was based on his ‘decomposition theorem’ that views a stationary process

{ ∈N} as an element in a Hilbert space of square-integrable functions ((||2)∞).
This is primarily a mathematical approximation result whose inferential component

was developed subsequently; see Anderson (1971).

Box and Jenkins (1970) extended the ARMA(p,q) family of models to allow for

a very special form of nonstationarity for the stochastic processes { ∈N}: “Mod-
els which describe such homogeneous nonstationarity behavior can be obtained by sup-

posing some suitable difference of the process is stationary.” (p. 85). That is the

non-stationary process { ∈N} is transformed into a stationary process using -

differencing, {=∆ ∈N} for  ≥ 1 ∆=(1−), =−. This gave rise to
the ARIMA(p,d,q) family of models (‘I’ stands for ‘Integrated’) based on { ∈N},
which imposes unit roots on the AR(p) component.

The relevance and role of the unit roots imposed by (1−) onto { ∈N} were
not fully appreciated until the late 1970s, when Dickey and Fuller (1979) proposed

a framework for unit-root testing by extending White’s (1958) results for the sim-

plest AR(1) model: =1−1+ 1∈[−1 1] vNIID(0 2) ∈N. This brought
about radical and rapid changes to time series modeling, known as the ‘unit-root rev-

olution’, which involved a novel inferential component for Unit-Root (UR) processes

{ ∈N} based on non-standard asymptotic sampling distributions, framed in terms
of functionals of the Brownian motion process; see Phillips (1987).

The unit-root revolution also expanded into multivariate models, including the

Vector AR(p) (Hendry, 1995, Lutkepohl, 2005, Juselius, 2006):
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VAR(p): Z=a0+
P

=1AZ−+ε εvNIID(0Σ) ∈N (4)

and the related cointegration analysis (Engle and Granger, 1987; Johansen, 1991).

The new unit-root procedures were also extended to panel data; see Pesaran (2015).

1.2 Dickey-Fuller (D-F) unit-root testing

It should be noted at the outset that focusing on the AR(1) and Unit Root [UR(1)]

models does not restrict the generality of the discussion since the AR() model can be

reparametrized to isolate a potential unit root 1=
P

=1  (Said and Dickey, 1984):

=0+
P

=1 −+ → =0+1−1+
P−1

=1 ∆−+ (5)

Dickey and Fuller (1979) pioneered the modern era of unit root testing based on:

0: 1=1 vs. 1: |1|  1 (6)

by extending White’s (1958) results to AR(1) models (B)-(C) in Table 1.

Table 1: Dickey-Fuller (D-F) AR(1) models

(A) =1−1+ vNIID(0 2) ∈N, 1∈[−1 1] 2  0
(B) =0+1−1+ vNIID(0 2) ∈N, 1∈[−1 1] 0∈R:=(−∞∞)
(C) =0++1−1+  v NIID(0 2) ∈N 1∈[−1 1] (0 )∈R2
White (1958) considered the AR(1)-(A) model, pioneering the asymptotic non-

standard sampling distribution of the OLS estimator b1=[P

=2(−1)
P

=2 
2
−1]

in three steps. First, he pondered over the different choices of the initial 0:

(i) 0= (constant), (ii) 0vN(0 2(1−21)) (iii) 0=
selecting 0= and thus omitting (0;ϕ0) from the joint distribution of Y:

(y;ϕ)=
Q

=1 (|−1;ϕ)=(22)−

2 exp

©− 1
22

P

=1(−1−1)2
ª
 ∀y∈R (7)

Second, he derived the proper scaling () for b1 by using Fisher’s information based
on (7), noting his invoking ‘independence’ but explaining that “This approach does,

however, give an heuristic method for finding a function () such that ()(b1−1) has
a non-degenerate limiting distribution.” Third, White deduced the asymptotic distrib-

ution of b1 for 1=1 by invoking Donsker’s (1951) invariance principle (p. 1196):
AR(1)-(A): (b1−1) 1=1v

→∞
[
R 1
0
B2()]−1

R 1
0
B()B()] (8)

where {B() ∈[0 1]} denotes the Brownian motion process; see Billingsley (1995).
Using the aPP perspective, Dickey and Fuller (1979), and the subsequent unit-root

literature extended (8) to models (B)-(C) in Table 1 (Phillips and Perron, 1988):

AR(1)-(B): (b1−1) 1=1v
→∞

[
R 1
0
B
2
()]−1

R 1
0
B()B() B()=B()− R 1

0
B() (9)

AR(1)-(C): (b1−1) 1=1v
→∞

[
R 1
0
eB2()()]−1 R 1

0
eB()eB()

eB()=B()−4[R 1
0
B()−3

2

R 1
0
B()]−6[R 1

0
B()−2 R 1

0
B()]

(10)

These results have been extended further by assigning more elaborate probabilistic

structures, such as ARMA(p,q), to { ∈N}; see Choi (2015), Hatanaka (1996).
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1.3 The aPP vs. the statistical perspective: a preview

Broadly speaking, empirical modeling and inference are guided by two perspectives

that serve interrelated but complementary objectives: the traditional aPP perspective,

relying primarily on substantive (theoretical) subject matter information, and the

statistical perspective, relying exclusively on the statistical systematic information

mirrored by the chance regularity patterns exhibited by data y0; see Spanos (2010).

The aPP perspective, dominating econometrics since the 1930s, views the AR(1):

(A)-(C) models in Table 1 as stochastic difference equations, framed by prespecifying:
––––––––––––––––––––––––––––––––––––
hai the functional form of the equations,

hbi the range of values of their unknown parameters, and
hci the probabilistic assumptions of their error term ; see Mann and Wald (1943).
––––––––––––––––––––––––––––––––––––
The aPP perspective is appropriate for evaluating the behavior of a given substantive

model, sayM(y) ϕ∈© under different shocks { ∈N}, with a view to evaluate
its stability as a given system (Hespanha, 2018), and fine-tune its performance for

forecasting, policy, and control purposes; see Box and Jenkins (1970).

It turns out, however, that not every aPP modelM(y) ϕ∈© is well-grounded
for inference with data y0 since imposing hai-hci on y0 would often give rise to
unreliable inferences. Why? The probabilistic structure that matters for inference

purposes is not that of the error term, but the one indirectly assigned by { ∈N}
to the observable process { ∈N} underlying data y0. The letter is unveiled using
the statistical perspective that provides the missing link between an aPP model,

M(y) ϕ∈© and the real-world mechanism that generated y0, in the form of the

implicit statistical modelM(y), θ∈Θ framed entirely in terms of probabilistic as-
sumptions assigned to the process { ∈N} (section 2).
The primary role ofM(y) is (a) to ensure that { ∈N} is well-defined in both

a probabilistic sense (Kolmogorov’s existence theorem), and (b) statistical sense (its

probabilistic assumptions are complete and testable, rendering feasible the task of

establishing its statistical adequacy for data y0). (a)-(b) frame the preconditions for

M(y) to be well-grounded apropos ofM(y):

––––––––––––––––––––––––––––––––––––
[S1] the aPP hai-hci are affirmed by probabilistic assumptions assigned to { ∈N}.
[S2]M(y) does not belie the statistical systematic information in data y0.

––––––––––––––––––––––––––––––––––––
When [S1] is false there is no well-defined process { ∈N} (in Kolmogorov’s sense)
underlying M(y) and when [S2] is false, either (i) ϕ∈© is not uniquely defined
(identified) with respect to θ∈Θ or (ii)M(y) is statistically misspecified for y0.

Kolmogorov’s (1933) existence/extension theorem specifies when a sto-

chastic process { ∈N} is ‘well-defined’ in terms of its joint distributions:
(1  ;ψ)=P(: 1()≤1 · · ·  ()≤) ∈ y∈R

  for =1 2 3  (11)

satisfying the symmetry (often trivially valid) and the consistency condition:

lim
→∞

(1  ;ψ)=−1(1  −1;ψ) y∈R
  for =2 3  (12)

When these conditions hold for (11), it can be inferred that:
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(i) existence: { ∈N} is a well-defined stochastic process, with distribution
(1  ;ψ) y∈R

  defined on a probability space (=P()) and
(ii) extension: (1  ;ψ) can be extended asymptotically as →∞.

As Billingsley (1995) points out: “For many purposes the underlying probability space

is irrelevant, the joint distribution of the variables in the process being all that matters.”

p. 486. Interestingly, (12) ensures that (|−1  1;φ) =2 3   is properly

defined to frame the dependence in { ∈N}, providing the cornerstone for the
theory of dependent stochastic processes; see Renyi (1970), Shiryaev (1996).

The primary objective of the paper is twofold. First, to argue that the AR(1)

models in Table 1 are not well-grounded since stipulations [S1]-[S2] do not hold, but

the traditional unit-root literature ignores that by taking presumptions hai-hci at
face value, where hbi specifies 1∈[−1 1] entailing:
––––––––––––––––––––––––––––––––––––
hdi the AR(1) nests the Unit Root [UR(1)] model when 1=1,
––––––––––––––––––––––––––––––––––––
which is the primary source of several statistical conundrums, including:

[C1] The asymptotic non-standard sampling distributions (Phillips, 1987).

[C2] The low power of unit-root tests for 1 near 1. “One general conclusion to

emerge is that, ..., the discriminatory power in all of the tests between models with a root

at unity and a root close to unity is generally low.” (Phillips and Xiao,1998, p. 22).

Attempts to meliorate [C2], include re-framing the unit-root hypotheses (Leybourne,

1995), reshaping the initial conditions (Müller and Elliott, 2003), adding extraneous

variables to the AR(1) model (Hansen, 1995), as well as:

[C3] replacing the D-F in Table 1 with the Error-Autocorrelation (E-A) parame-

trization the Error-Autocorrelation (E-A); see Dickey (1984), Bhargava (1986).

[C4] The incompleteness and non-testability of the error term assumptions under-

mining the statistical adequacy of the estimated AR(p) models.

Second, to bring out explicitly the statistical models corresponding to the AR(1):

(A)-(C) models in Table 1 using Fisher’s statistical perspective to frame the stipu-

lations [S1]-[S2] in terms of probabilistic assumptions assigned to { ∈N}. It is
argued that presumption hdi belies Kolmogorov’s existence theorem and thus there

is no stochastic process { ∈N} underlying both the AR(1) and UR(1) models. In-
stead, the statistical AR(1) and UR(1) models (i) are based on two distinct processes

{ ∈N}, with different (ii) probabilistic assumptions and (iii) statistical parame-
trizations, (iv) rendering them non-nested (Hatanaka, 1996), and (v) their respective

likelihood-based inferential components are free from the conundrums [C1]-[C4]. The

claims (i)-(iv) are affirmed by the recursive ‘solution’ of the AR(1) models when 0 is

treated as a typical element of { ∈N} (Appendix A). The Error-Autocorrelation
(E-A) framing of the AR(1): (B)-(C) models in Table 1 also confirms the statistical

parametrizations of (0 0 1)  but ignores those of the key parameters 1 and 2
at its peril. Simulations based on the statistical AR(1) and UR(1) models affirm the

claims (i)-(v) but indicate that (vi) the two models can be observationally equivalent

for 1 near 1, suggesting that the choice between them should be based on statistical

adequacy grounds. To affirm the key role of well-defined models, a family of non-
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-stationary AR(1) models that nests the corresponding UR(1) models is proposed,

evidencing by analytical derivations and simulations that neither of the conundrums

[C1]-[C2] arises when testing for 1=1 using likelihood-based tests

2 Empirical modeling and inference in practice
2.1 The aPP (substantive) vs. the statistical model
Adopting a broader view of empirical modeling, we distinguish between the aPP

substantive (theoretical/structural) and the statistical information in data y0.

The aPP perspective gives rise to a ‘substantive model’, denoted by:

M(y)={(y;ϕ) ϕ∈©⊂R} for all (∀) y∈R
   (13)

that revolves around its joint distribution (y;ϕ) ϕ∈© ∀y∈R
 , indirectly speci-

fied via the error term assumptions. Implicit in every substantive model, there is a

‘statistical model’, whose generic form is (Spanos, 2010):

M(y)={(y;θ) θ∈Θ⊂R} ∀y∈R
  ≤ (14)

and (a) comprises the probabilistic assumptions imposed (often implicitly) on the

observable process { ∈N} underlying data y0 determining (y;θ) θ∈Θ, ∀y∈R
 ,

and (b) provides the crucial link betweenM(y) and the real-world mechanism that

generated data y0. Hence, θ∈Θ is framed purposefully to relate the two sets of

parameters via restrictions, say g(ϕθ)=0 The (substantive) parameters ϕ∈© are
‘identified’ only when g(ϕθ)=0 defines ϕ uniquely in terms of θ; see Spanos (1990b).

2.2 Fisher’s model-based statistical perspective

The concept of a ‘statistical model’ plays a crucial role in both frequentist and

Bayesian inference, but it has not been adequately delineated for empirical mod-

eling and inference purposes. McCullagh (2002) discourses this issue by posing and

answering several key questions, including: “What is a statistical model?” and “What

is a parameter?” The notions that a model must “make sense,” and that a parameter

must “have a well-defined meaning” are deeply ingrained in applied statistical work, ...,

but absent from most formal theories of modelling and inference. ” (p. 1225). He pro-

ceeds to criticize the statistics literature for ignoring such questions and oppugning

postulating statistical models in ‘ad hoc and idiosyncratic ways’, including attaching

generic error terms to mathematical equations.

McCullagh’s (2002) questions and concerns can be addressed in the context of R.

A. Fisher’s (1922) statistical model-based perspective, grounded on a parametric sta-

tistical modelM(y) in (14) being viewed as an ‘approximate and idealized’ descrip-

tion of the statistical mechanism that could have given rise to y0. The specification of

M(y) revolves around selecting: (i) the appropriate probabilistic assumptions from

all three broad categories, Distribution (D), Dependence (M), and Heterogeneity (H),

assigned to { ∈N} to render data y0 a ‘typical realization’ thereof, and (ii) the
particular parametrization θ∈Θ to probe the questions of interest; see Spanos (2019).
The cornerstone of frequentist inference is the sampling distribution, (;θ)
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of a statistic =(1 2  ) (estimator, test, predictor), derived via:

()=P(≤)=
Z Z

· · ·
Z

| {z }
{y: (y)≤}

(y;θ)y ∀∈R 
(15)

with the derivation of (;θ)=() in (15) presuming that (y;θ) θ∈Θ,
∀y∈R

  (a) is well-defined, and (b) its probabilistic assumptions are valid for y0.

The statistical perspective comprises two facets, the modeling (specification, Mis-

Specification (M-S) testing, respecification) and the inference. The modeling aims to

reach a statistically adequateM(y) with data y0 which can only be secured when

M(y) comprises a complete set of testable probabilistic assumptions (Table 2), in

conjunction with M-S testing to probe their validity; see Spanos (2018).

The statistical adequacy (approximate validity) of M(y) with data y0 is

crucially important for the reliability of the invoked inference procedures since the

sampling distributions are derived via (15) presuming the validity of M(y) i.e.

(y;θ) y∈R
 . The latter underwrites the effectiveness (optimality) and reliability

of statistical inference, by ensuring that the actual error probabilities approximate

closely the nominal ones — derived by presuming the validity ofM(y). That is the

‘approximate validity’ of (y;θ) y∈R
  is what matters for inference purposes.

When M(y) is statistically misspecified, (i) (y;θ) y∈R
  and the likelihood

function (θ;y0)∝(y0;θ) θ∈Θ are erroneous, (ii) distorting the sampling distrib-
ution (;θ) derived via (15), (iii) giving rise to ‘non-optimal’ inference procedures,

and (iv) inducing sizeable discrepancies between the actual and nominal error prob-

abilities; see Spanos (2019). Regrettably, the aPP perspective pays little to no atten-

tion to the statistical adequacy ofM(y) largely ignoring statistical misspecification.

Hence,M(y) provides reliable inferential underpinnings forM(y) only when it is

well-grounded in both probabilistic (Kolmogorov) and statistical sense (adequate).

2.3 The aPP perspective: key questions and conundrums

As a preview of the issues raised and discoursed, consider the following example.

Example 1. The AR(1)-(B) model is specified using presumptions hai-hdi:
M(y): =0+1−1+ ϕ:=(0 1 2)∈© vNIID(0 2) ∈N (16)

where ©:=[R×[−1 1]×R+ An aPP practitioner is likely to use the transfer:
(|−1)vNIID(0 2) −→ (|−1)vN (0+1−1 2)  ∈N (17)

to define the distribution of the sample Y:=(1 2  ) for the AR(1)-(B) by:

(y;ϕ)=(0;φ0)
Q

=1 (|−1;ϕ) ϕ:=(0 1 2)∈© ∀y∈R (18)

The initial 0 is handled by choosing one from the different choices for (0;ϕ0):
––––––––––––––––––––––––––––––––––––
hei (i) 0=, (ii) 0vN(0 2

(1−21)
), (iii) 0vD(0 2

(1−21)
), (iv) 0=, etc.

––––––––––––––––––––––––––––––––––––
Invoking, say hei-(i), the practitioner would define the likelihood function by:

(ϕ;y)∝Q

=1 (|−1;ϕ)=(22)−

2 exp[- 1

22

P

=1(−0−1−1)2] ∀ϕ∈© (19)
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To evaluate whether the AR(1)-(B) model in (16) is well-grounded, one is required

to evaluate the validity of stipulations [S1]-[S2] (section 1.3) for the joint distribution

in (18). This calls for unveiling its implicit statistical model,M(y), θ∈Θ framed in
terms of a complete set of probabilistic assumptions assigned to { ∈N} specifying
its joint distribution (y;ψ) ψ∈Ψ to be juxtaposed with (y;ϕ)ϕ∈© ∀y∈R

in (18). The transfer in (17), however, is inadequate to determine (y;ψ) ∀y∈R

since: [i] Normality: (|−1)vN( ) [ii] Linearity: (|−1)=0+1−1
[iii] Homoskedasticity:  (|−1)=2 [iv] Markov: (|−1 1;ϕ)=(|−1;ϕ),
are incomplete because there is an additional (implicit) assumption:

[v] the parameters ϕ:= (0 1 
2
0) are constant over ∈N, (20)

which renders the transfer {(|−1)  ∈N} −→ { ∈N} more challenging.
It can be shown that the assumptions [i]-[iv] imply that { ∈N} is Markov (M)

([iv]), and Normal (N) since [i]-[iv] imply that ( −1;ϕ) is Normal, stemming from
the two-way linearity, [ii] and (−1|)=0+1 (due to [iv]), combined with [iii],
which extends to (y;ψ) ψ∈Ψ of { ∈N} due to [iv]; see Spanos (1995). There
is, however, a missing Heterogeneity (H) assumption for { ∈N} needed to affirm
assumption [v] in (20). This is because assuming { ∈N} is M and N, yields:

(y;ψ)
M
=1(1;ϕ0)

Q

=2 (|−1;ϕ()) ∀y∈R (21)

with N→ (|−1)vN (0()+1()−1 2())  ϕ():= (0() 1() 20())  ∈N.
This result shows that assumptions [i]-[iv] above are affirmed, but N and M in (21)

give rise to an AR(1) model with -varying parameters ϕ(), belying [v]. Note: it

is important to distinguish between heterogeneity:   (|−1)=1(), ∈N, and
heteroskedasticity:   (|−1)=2(−1); see Spanos (1986), p. 473.
This brings out the broader potential conflict between the aPP perspective, based

on presumptions hai-hei  and the statistical perspective on the AR(1)-(B) model since
for a well-defined (as per Kolmogorov’s existence theorem) process { ∈N} under-
lying the statistical AR(1) model, its joint distribution (y;ψ) ψ∈Ψ determines:
––––––––––––––––––––––––––––––––––––
hai* the functional form of  (|−1)=(−1;θ1) and   (|−1)=(−1;θ2)
hbi* their statistical prametrizations θ:= (θ1θ2)∈Θ⊂R 

hci* the probabilistic structure of the (statistical) error term =− (|−1),
hdi* whether or not the AR(1) nests the UR(1) model for 1=1 stems from hbi*,
hei* 1 has the same probabilistic structure as every other element of { ∈N}.
––––––––––––––––––––––––––––––––––––
The stipulations hai*-hei* are internally consistent and interrelated via the well-
defined (y;ψ) ψ∈Ψ but the presumptions hai-hei are not necessarily so unless
(y;ϕ) ϕ∈© ∀y∈R in (18) is also well-defined. It is argued that this is not the

case, since hbi*-hei* oppugn hbi-hei for being internally inconsistent.
––––––––––––––––––––––––––––––––––––
Why has the traditional literature ignored these potential conflicts?

––––––––––––––––––––––––––––––––––––
The choices in (17)-(19) appear right-minded to a traditional practitioner since

hai-hei are, indeed, pertinent for evaluating the behavior of the aPP AR(1)-(B) model
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under different shocks { ∈N}. Hence, to be mindful of any problems when the aPP
is used to guide statistical modeling and inference requires one to be cognizant of the

statistical perspective with its well-grounded models and statistical parametrizations,

which seems gratuitously laborious and needless to such a practitioner.

2.4 Well-defined statistical AR(1) and UR(1) models

Key question: does there exist a well-defined process { ∈N} as per Kolmogorov’s
existence theorem, grounded on hai-hei with a joint distribution given in (18) that
nests parametrically the corresponding UR(1) model when 1=1?

To answer this question necessitates a complete set of probabilistic assumptions

for { ∈N} to affirm, not only assumptions [i]-[iv], but also [v] in (20). This calls for
adding a Heterogeneity (H ) assumption to N andM in (21), likely to be ‘stationarity’.

Example 2. Assuming { ∈N} is a Markov (M), Stationary (S) process yields:
(y;ψ)

M
=1(1;φ0)

Q

=2 (|−1;φ1)
M&S
= (1;φ0)

Q

=2 (|−1;φ1) ∀y∈R (22)

Adding the Normality (N) assumption yields (−1;φ) (Spanos, 1990a):µ

−1

¶
v N

µµ
0
0

¶


µ
(0) (1)

(1) (0)

¶¶
 (23)

where ()=  ()=(0) ( −1)=(1) ∈N This gives rise to the sta-
tistical AR(1) model in Table 2, based on the probabilistic reduction:

(−1;φ)=(|−1;φ1)·(−1;φ2) ∀ (−1)∈R2 (24)

where (|−1)vN (0 + 1−1 20)  −1vN (0 (0))  ∈N (25)

Table 2: Statistical AR(1) model M(y)

Statistical GM: =0 + 1−1 + 0 ∈N.
[1] Normality: ( −1) v N( ) ( −1)∈R2
[2] Linearity:  (|(−1))=0 + 1−1
[3] Homoskedasticity:   (|(−1))=20
[4] Markov: { ∈N} is a Markov process,
[5] t-invariance: θ:= (0 1 

2
0) are not changing with 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∈N.

Parametrization: 0=0(1−1)∈R 1=(1)

(0)
∈(−1 1) 20=(0)(1−21)∈R+

In contrast to the aPP AR(1)-(B) model in (16), its implicit statistical AR(1)

model in Table 2 is specified in terms of the bivariate distribution (−1;φ) in
(24) because −1 is not weakly exogenous for θ=φ1 since φ1 and φ2 are not

variation-free, e.g. =0 → 0=0 (Engle et al., 1983). Hence, the statistical AR(1)

model in Table 2 retains (−1;φ2) by conditioning on (−1), the -field generated
by −1; see Billingsley (1995). That brings out the fundamental role of (1;φ0) in
defining (y;ψ) by treating 1 as a typical element of { ∈N}. It is important to
mention that for 0=0 Table 2 would yield the statistical AR(1)-(A) model.

The probabilistic reduction of (y;ψ) in (22)-(25) based on the assumptions N,
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M, and S, ensures that the statistical AR(1) model in Table 2 “makes probabilistic

sense” (McCullagh, 2002) in light of the following key features.

(i) The stochastic process { ∈N} underlying the AR(1) model in Table 2 is
well-define since it satisfies Kolmogorov’s existence theorem.

(ii) The model assumptions [1]-[5] are equivalent (necessary and sufficient) to the

reduction assumptions, i.e. (N, M, S) À[1]-[5]; see Spanos (1995). This confirms
that stationarity (S) is the missing H assumption for { ∈N} and N is in-built,
rendering ill-conceived any attempt to relax vN( ) and arrogate generality.
(iii) Table 2 comprises a complete, internally consistent, and testable set of prob-

abilistic assumptions [1]-[5] specifying the statistical AR(1) model. In contrast, the

AR(1) models (Table 1) are often specified in terms of an incomplete and non-testable

set of assumptions using a generic error process { ∈N} (Phillips, 1987):
{i} ()=0 for all ∈N {ii} sup||+  0 for   2   0
{iii} lim

→∞
( 1


(
P

=1 )
2=2∞0

{iv} { ∈N} is strongly mixing with coefficient
 →

→∞
0 such that

P∞
=1 

1−2
 ∞ 2

Although the unit-root literature views {i}-{iv} as ‘weak’ assumptions expedient

for the generality of the asymptotic non-standard sampling distributions in (8)-(10),

what matters for the reliability of the ensuing inferences is whether (a) { ∈N} is
well-defined, and (b) the model assumptions [1]-[5] are valid for data y0.

(iv) Assumptions [1]-[5] assign to the statistical error term, 0=[−(|(−1))],
“a well-defined meaning” as a model-specific Martingale difference (Md) process:

(0|(−1))vNMd (0 20)  ∈N; see section 3 for more details.
(v) The statistical Generating Mechanism (GM) in Table 2 designates ‘how one

could simulate artificial replicas of data y0’; see Cox (1990), p. 172.

The log-likelihood function of the AR(1) model in Table 2 takes the form:

ln(θ;y0)= ln (1;φ0)+
P

=2 ln (|−1;θ) θ∈[R×(−1 1)×R+] (26)

where 1vN (0 (0)) would be reparametrized in terms of θ, yielding:
(1;θ)=(2(

2
0(1−21))−

1
2 exp[− 1

22
(−[0(1−1)])2] 1∈R (27)

This indicates that invoking hei* 0vN (0 (0)) would render the aPP joint distri-
bution in (18) and the related likelihood function in (19) incongruous for 1=1. It is

intriguing to note that White (1958) would have stumbled upon this problem if he

were to select either (ii) 0vN(0 2(1−21)) or (iii) 0=, instead of (i) 0=.
The problem with 1=1 could be affirmed, however, via the limits in probability

of the OLS estimators of θ (Table 2): b1=[P

=2(− )(−1− )
P

=2(−1− )2]b0= −b1 −1 = 1


P

=1  b2= 1
−2

P

=1b2  b=−b0−b1−1 using the first two
sample moments of { ∈N} converging in probability ( P−→) to the following limits:


P−→ 0

1


P

=2(− )(−1− )]
P−→ (1) 1



P

=2(−1− )2]
P−→ (0) entails:

b1 P−→ (1)

(0)
 b0 P−→ (1−1)0 b2 P−→ (0)(1−21) (28)
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These results confirm the parametrizations in Table 2, implying that for |1|=1 i.e.
(|(1)|=(0)), b0 P−→ 0 b2 P−→ 0, oppugning the nestedness presumption hdi  and
affirming that 1=1 renders the covariance matrix in (23) singular. This result belies

Kolmogorov’s existence theorem rendering the distribution in (18) incongruous.

The results in (26)-(27) also pertain to the derivation of the non-standard sampling

distributions since the distribution (y;θ), ∀y∈R of the AR(1) model in Table 2

provides the cornerstone for deriving all relevant sampling distributions for inference

via (15). Following White (1958), the unit-root literature sidesteps this touchstone

procedure by using an offhand derivation based on the OLS estimator b1 whose
scaled difference ()(b1−1) is inferred to converge in distribution (as  → ∞)
to (9), after (i) imposing 1=1 to transform { ∈N} into a partial sum process

{[−()] ∈N}, where ()=0 and (ii) invoking the functional central limit
and the continuous function theorems (Hall and Heyde, 1980). Note that for ()=0

and ()=0+1 the same procedure would yield (8) and (10); see Choi (2015),

pp. 18-19. That is, the derivation of these non-standard distributions is viewed as a

mathematical deduction problem with presumptions hai-hei the invoked premises. As
described more broadly by Rao (2004): “... statistics as a deductive discipline of deriving

consequences from given premises. The need for examining the premises [M(y)], which

is important for practical applications of results of data analysis, is seldom emphasized.”

Worse, the convergence in distribution of (b1−1) to (8)-(10) contradicts the
convergence in probability results in (28) which obviate b1 P→ 1 The traditional ap-

proach reconciles this conflict by hypothesizing a ‘quantum leap’ between 1=(1−),
for a tiny 0 and 1=1 that transforms a stationary process { ∈N} into a non-
stationary one, fusing the AR(1) and UR(1) models, and transmuting the standard

into non-standard distributions. A less embrangled account advocated next is that

the two models are grounded on two distinct stochastic processes { ∈N}.
Potential objection from traditional unit-root testing

Due to unfamiliarity with the statistical perspective, an advocate of the D-F unit-

root testing is likely to dispute the above direct derivation of the statistical model in

Table 2, based on assuming that { ∈N} is Normal (N), Markov (M) and Stationary
(S) as a fabrication, despite the case made above (section 2.3) that these assumptions

are in-built via [i]-[v] in conjunction with the equivalence (N, M, S) À [1]-[5].

A more familiar way to convince this advocate might be to use a traditional

procedure to affirm the statistical AR(1) in Table 2 and lead us to the related UR(1)

model. Such a procedure is the recursive substitution ‘solution’ of the AR(1)-(B)

model, when viewed as a stochastic difference equation (Enders, 2004):

=

10 + 0

¡P−1
=0 


1

¢
+
P−1

=0 

1− (29)

Invoking presumption hfi ‘as →∞’, or more appositely, using hei* 0 is a typical
element of { ∈N}, (29) yields the ‘asymptotic rendering’ of ϕ, comprising two
non-nested and separate (Hatanaka, 1996) parametrizations (Appendix A, 1=2=0):

AR(1): 11, ϕ0:=[0=0(1−1) 1=(1)

(0)
 20=(0)(1−21)] (Table 2), and

UR(1): 1=1, ϕ1:=(1 
2
1=(0)); see Appendix A with 2=0
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The bivariate distribution in (23) and the parametrization for (16)(29) can also

be unveiled using (29); see Appendix A for the AR(1)-(C) model with 1=2=0.

The probabilistic structure and the ensuing parametrizations implicitly imposed

on { ∈N} for the UR(1) model can also be unveiled by ‘solving’ (29) for 1=1:
=0+0+

P−1
=0 −

which, after invoking hei* 0 is a typical element of { ∈N} i.e. (0)=0

 (0)=0 gives rise to (Appendix A with 2=0):

()=0+1 ( −)=(0)(−) =0 1 (30)

where the notation 0:=1 and 
2
:=(0) is used to avoid conflating model parameters

and moments of { ∈N}. (30) reveals the bivariate distribution (−1;ψ):µ

−1

¶
v N

µµ
0+1

0+1(−1)
¶


µ
(0)· (0)·(−1)

(0)·(−1) (0)·(−1)
¶¶

 (31)

(|−1)vN (1+−1 (0))  −1vN (0+1(−1) (0))  ∈N (32)

which gives rise to the UR(1) model in Table 3; see Spanos (1990a).

Table 3: Statistical Unit Root [UR(1)] model

Statistical GM: =1+−1 + 1 ∈N.
[1] Normality: ( −1) v N( ) ( −1)∈R2
[2] Linearity:  (|(−1))=1+−1
[3] Homoskedasticity:   (|(−1))=21
[4] Markov: { ∈N} is a Markov process,
[5] t-invariance: θ:= (1 

2
1) are not changing with 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∈N.

Parametrization: 1∈R 21=(0)∈R+

(−1;ψ) in (31) addresses the singularity problem with the AR(1) model in Table
2 for 1=1 since its covariance matrix is non-singular for all 1 confirming the two

distinct processes underlying the AR(1) and UR(1) models conjectured above.

A cursory glance at Tables 2 and 3 by an advocate of D-F unit-root testing might

confer the impression that the AR(1) nests the UR(1) model when 1=1, due to the

similitude of the two conditional distributions, (25) and (32). The similitude, however,

is more apparent than real since −1 is not weakly exogenous for θ or θ and
thus the relevant probabilistic structure is that of their joint distributions in (23)

and (31). A more heedful comparison reveals: (i) covariance stationarity [AR(1)] vs.

partial sum heterogeneity [UR(1)], and (ii) their parametrizations, θ:= (0 1 
2
0)

vs. θ:= (1 
2
1) with 1 6=0 21 6=20 (iii) rendering the two models non-nested.

The above derivations and arguments challenge the aPP presumptions hbi-hfi
since they run afoul the statistical stipulations hbi*-hei* based on the joint distrib-
ution of { ∈N} In particular, 1∈[−1 1] in hbi belies the statistical 1∈(−1 1)
in hbi*, which in turn renders hdi incongruous since 1=1 runs afoul Kolmogorov’s
existence theorem. Also, presumption hci belies hci* since the statistical error term
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is a model-specific Md process, and not a generic process for all AR(1) models in

Table 1. Presumption hei belies hei* since treating the initial 1 (or 0) unlike all
other elements of { ∈N} makes sense from the aPP perspective, but is unfounded
on probability theory grounds. Also, hei* renders the presumption hfi ‘as  → ∞’
uncalled-for since it obscures the fact that the -varying problem of the recursive

‘solution’ in (29) is an artifact created by the aPP perspective; see Appendix A.

Key question answered. There is no stochastic process { ∈N} satisfying
Kolmogorov’s existence theorem underlying the AR(1) in (16) that nests the UR(1)

model when 1=1. Instead, there are two different processes, underlying two non-

nested but potentially partly overlapping models; see Vuong (1989), Hatanaka (1996).

3 The statistical AR(1) and UR(1) models

3.1 The statistical perspective on the AR(1)-(C) model

Example 3. For the statistical AR(1) model with a trend, { ∈N} is assumed to
be Normal (N), Markov (M), and covariance stationary, but mean-heterogeneous (1st

order polynomial in ) (S()). When imposed on { ∈N} these assumptions yield:
(1  ;ψ)

M&S()
= (1;φ0)

Q

=2 (|−1;φ1) y∈R (33)

where the statistical parameters φ1 are derived from those of ( −1;φ) (Table 4).

Table 4: Bivariate Normal distribution of the AR(1) modelµ

−1

¶
v N

µµ
0+1

0+1(−1)
¶


µ
(0) (1)

(1) (0)

¶¶


where ()=0+1  ()=(0) ( −1)=(1)

Table 5: Statistical AR(1) model with a trend

Statistical GM: =0 + 1+ 1−1 + 0 ∈N.
[1] Normality: ( −1) v N( ) ( −1)∈R2
[2] Linearity:  (|(−1))=0+1+1−1
[3] Homoskedasticity:   (|(−1))=20
[4] Markov: { ∈N} is a Markov process,
[5] t-invariance: θ:= (0 1 1 

2
0) are not changing with 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∈N.

0=(1−1)0+11∈R 1=(1−1)1∈R 1=(1)

(0)
∈(−1 1) 20=(0)(1−21)∈R+

Table 5 specifies the statistical AR(1) model in terms of a complete, internally

consistent, and testable set of probabilistic assumptions [1]-[5], including the sta-

tistical parameterization of θ:= (0 1 1 
2
0)=φ1. As in Table 2, −1 is not

weakly exogenous for θ, since φ1:= (0 1 1 
2
0) and φ2:=(0 1 (0)) are not

variation-free (Engle et al., 1983), and thus the statistical AR(1) model is specified in

terms of ( −1;φ). In direct analogy to Tables 2-3, the AR(1) model assumptions
[1]-[5] in Table 5 are equivalent to the reduction assumptions (N,M,S()).
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The AR(1) model in Table 5 does not nest the UR(1) model since the value

1=( −1)=1 is inadmissible; it renders the covariance matrix in Table 4
singular. Equivalently, the aPP parameters ϕ in Table 1 for AR(1)-(C) model are

not identified relative to the statistical parameters θ in Table 5; see Spanos (1990b).

Also, the generic error vNIID(0 2), ∈N, becomes a model-specific statistical error
term {(0|(−1))  ∈N} since 0=(−(|(−1))) implies that:

(0|(−1))vNMd (0 20)  ∈N (34)

where ‘NMd’ stands for ‘Normal Martingale difference’.

The log-likelihood function of the AR(1) model relating to (33) takes the form:

ln(θ;y0)= ln (1;ϕ0) +
P

=2 ln (|−1;θ) θ∈[R2×(−1 1)×R+] (35)

which calls for reparametrizing 1vN(0+1 (0)) in terms of θ (Table 5):
(1;θ)=(

(1−21)
220

)
1
2 exp

n
− (1−21)[(1−1)21−0(1−1)+1(21−1)]2

220(1−1)4
o
 1∈R (36)

Note the crucial importance of the parametrizations in θ in Table 5 and (36) which

provide constraints, i.e. |1|1 for the ML estimators based on (35).
Example 4. The statistical UR(1) model corresponding to the AR(1) in Ta-

ble 5 arises from imposing Normal, Markov, partial-sum heterogeneity, and mean-

heterogeneity (2nd order polynomial in ) on { ∈N}, which is confirmed in
Appendix A using the recursive ‘solution’. The underlying bivariate distribution,

(−1;ψ), in Table 6 (Spanos, 1990a), gives rise to the probabilistic reduction:

(−1;ψ)=(|−1;ψ1)·(−1;ψ2) ∀ (−1)∈R2 (37)

underlying the parametrization of the probabilistic UR(1) model in Table 7.

Table 6: Bivariate Normal distribution of the UR(1) model with a trendµ

−1

¶
vN

µµ
0+1+2

2

0+1(−1)+2(−1)2
¶


µ
(0)· (0)·(−1)
(0)·(−1) (0)·(−1)

¶¶


where ()=0+1+2
2  ()=(0)· ( −1)=(0)·(−1)

Table 7: Statistical UR(1) model with a trend

Statistical GM: =0+1+−1 + 1 ∈N.
[1] Normality: ( −1) v N( ) ( −1)∈R2
[2] Linearity:  (|(−1))=0+1+−1
[3] Homoskedasticity:   (|(−1))=21
[4] Markov: { ∈N} is a Markov process,
[5] t-invariance: θ:= (0 1 

2
1) are not changing with 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∈N.

Parametrization: 0=(1−2)∈R 1=(22)∈R 21=(0)∈R+

In direct analogy to the AR(1) models in Tables 2 and 5, the reduction assump-

tions are equivalent to the model assumptions of the UR(1) in Table 7, and in view of

its parametrization φ1:=(0 1 
2
1) and φ2:=(0 1 2 (0)) −1 is also not weakly
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exogenous for θ=φ1, since 1=2=0→ 0=1=0. Hence, the UR(1) model is spec-

ified in terms of the joint distribution ( −1;φ). The entailed distribution of the
statistical error 1=(−(|(−1))) is: (1|(−1))vNMd (0 21)  ∈N
The log-likelihood function of the UR(1) model relating to (33) takes the form:

ln(θ;y0)= ln (1;θ) +
P

=2 ln (|−1;θ) θ∈[R2×R+]
(|−1;θ)= (12(0)) exp {−[(−0−1−−1)22(0)} 

calling for reparametrizing 1vN(0+1+2 (0)) in terms of θ (Table 7):
(1;θ)=(2(0))

− 1
2 exp {−(1−0−1)22(0)}  1∈R

3.2 Revisiting the Dickey-Fuller AR(1): (A)-(C) models

The statistical AR(1) and UR(1) models (with their parametrizations) relating to the

AR(1): (A)-(C) in Table 1 are shown in Table 8, where [A] and [B] are special cases

of [C] in Tables 5 and 7, arising by imposing zero restrictions on 0 1 2.

Table 8: Statistical AR(1) vs. UR(1) models relating to Table 1

[A]
=1−1+0 0vNMd(0 20)

1=
(1)

(0)
∈(−1 1) 20=(0)(1−21)∈R+

∆=1 1vNMd(0 21)
21=(0)∈R+

[B]

=0+1−1+00vNMd(0 20)
0=0(1−1)∈R 1=(1)

(0)
∈(−1 1)

20=(0)(1−21)∈R+

∆=1+1 1vNMd(0 21)
1∈R 21=(0)∈R+

[C]

=0+1+1−1+0 0vNMd(0 20)
0=(1−1)0+11∈R 1=(1−1)1∈R
1=

(1)

(0)
∈(−1 1) 20=(0)(1−21)∈R+

∆=0+1+11vNMd(0 21)
0=(1−2)∈R 1=(22)∈R

21=(0)∈R+

The statistical AR(1) and UR(1) models in Table 8 (i) are two distinct families of

models, with different (ii) probabilistic assumptions, and (iii) parametrizations, (iv)

rendering them non-nested, (v) whose respective likelihood-based inferential compo-

nents are based on regular sampling distributions, including ‘near’ unit-root testing

in the context of the AR(1) models in Table 8 based on the hypotheses:

0: 1=(1−) vs. 1: |1|(1−) for 0 (38)

as evidenced by simulation in section 3.4. No additional D-F type restrictions on

the constant and trend coefficients (Table 10) are needed in testing (38). These

evidence suggests and the choice between the AR(1) and UR(1) models should be

based primarily on statistical adequacy grounds, i.e. the validity their respective

assumptions [1]-[5]. The key role of nestedness is demonstrated in section 4 where

a well-defined family of non-stationary AR(1) models that actually nest the related

UR(1) models is proposed in the context of which 1=1 can be tested using likelihood-

based tests grounded on standard sampling distributions.

Taken together, these results affirm that conundrums [C1]-[C2] stem primarily

from the aPP AR(1) models (Table 1) being incongruous in a probabilistic sense
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(belying Kolmogorov’s existence theorem), as well as statistically misspecified since

the validity of the probabilistic assumptions [1]-[5] relating to { ∈N} is invariably
ignored due to [C4]. As argued above, failures that distort/belie the joint distribution

(y;θ) θ∈Θ, of { ∈N} would give rise to non-optimal inference procedures,
and induce sizeable discrepancies between the actual and nominal error probabilities,

undermining the reliability of any inferences; see Andreou and Spanos (2003).

3.3 Revisiting the Error—Autocorrelation (E-A) formulation

To bring out the crucial importance of the statistical parametrizations, let us revisit

the Error-Autocorrelation (E-A) formulation of the AR(1) models in Table 1 (Fuller,

1976; Dickey, 1984; Bhargava, 1986). The E-A is framed in terms of =()+
in conjunction with { ∈N} being a Markov process, known as the “components
representation of a time series.” (Schmidt and Phillips, 1992, p. 258):

E-A: AR(1)-(B): =0+ =1−1+ vNIID(0 2) ∈N
E-A: AR(1)-(C): =0+1+ =1−1+ vNIID(0 2) ∈N

(39)

(39) yields the model-specific E-A parametrizations of (0 0 1) in Table 9, which

coincide with the statistical parametrizations in Tables 2 and 5!

Table 9: Error-Autocorrelation (E-A) induced parametrizations

AR(1)-(B)*: =

0z }| {
[0(1−1)]+1−1+

AR(1)-(C)*: =

0z }| {
[0(1−1)+11]+

1z }| {
[1(1−1)]+1−1+

The E-A parametrizations in Table 9 raised questions about the pertinence of the

Dickey and Fuller (1981), Table X, (p. 1070), on joint and conditional hypotheses in

Table 10. Given that the E-A parametrization AR(1)-(B)*, 1=1→ 0=0 [T1], [T4]-

[T5] are incongruous, and the same holds for [T2]-[T3] and [T6] since 1=1→ 1=0.

Table 10: Dickey-Fuller Joint and Conditional tests

[T1] 0: 1=1 & 0=0 vs. 1: |1|1 or 0 6=0
[T2] 0: 1=1 & 1=0 vs. 1: |1|1 or 1 6=0
[T3] 0: 1=1 & 0=1=0 vs. 1: |1|1 or 0 6=0 or 1 6=0
[T4] 0: 1=1 & 0=0 vs. 1: 0 6=0 given 1 6=1
[T5] 0: 1=1 & 0=0 vs. 1: 0 6=0 given |1|1
[T6] 0: 1=1 & 1=0 vs. 1: 1 6=0 given 1 6=1

To avoid these incongruities, the E-A formulations of the AR(1) in Table 9 have

been widely adopted by the unit-root testing literature; see Banerjee et al. (1993),

Maddala and Kim, 1998, Choi (2015), Pesaran (2015) inter alia. As Schmidt and

Phillips (1992) argue: “... the important attraction of this parameterization is that the

meaning of the nuisance parameters 0 and 1 does not depend on whether the unit

root hypothesis is true.” (p. 259). Unfortunately, the E-A parametrizations (Table 9)
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relate only to the parameters (0 0 1) in Tables 2 and 5, but (a) ignoring the key

parameters (1 
2
) and (b) retaining 1∈[−1 1] renders the E-A parametrizations

internally inconsistent, undermining the ensuing unit-root testing.

To unveil this inconsistency, consider first the case 11 (Anderson, 1971):

=1−1+ → (2 ):=(0)=
2

(1−21)
 ( −1):=(1)=

1
2


(1−21)
 ∈N (40)

yielding 2=(0)(1−21):=20 1=[(1)(0)], affirming the parametrizations in Ta-
ble 5 and oppugning nestedness, transforming the generic vNIID(0 2) (Table 1)
into a model-specific Martingale difference (Md) process {0=(−1−1) ∈N}:

(0|(−1))vNMd (0 20)  ∈N
To derive the parametrization of 2 for 1=1 the ‘solution’ =0+

P

=1  yields:

(|(−1  1))=−1 ∈N with ()=0 (−)=()(−) =0 1
where 2:=(0) is used to avoid confusion, (0)=(

2
0)=0 (Appendix A), i.e.

{( (|(−1  0)) ∈N} is a second-orderMartingale process. Hence, { ∈N}
is a partial sum process (Table 6), with  (|(−1))=(0) (Table 7), and generic
error vNIID(0 2) is transformed into a model-specific Md process 1=(−−1):

(1|(−1))vNMd (0 21)  ∈N
However, to retain the functional form of the autoregression with 1=1 requires that

() takes the form ()=0+1+2
2 (Table 6) since:

(|(−1))=()−(−1)+−1= [(1−2)]+ [22] =0+1+−1
affirming θ:= (0 1 

2
1) in Table 7. It indicates, however, a problem in the tradi-

tional pairing of the AR(1) and UR(1) models in Table 1 since the natural pairing is

AR(1)-[B] & UR(1)-[A] and AR(1)-[C] & UR(1)-[B].

In summary, the E-A parametrizations in Table 9 are inconsistent since they ignore

the (implicit) statistical parametrizations for (1 
2
) shown in Table 8.

3.4 Simulating the statistical AR(1) and UR(1) models

The main conclusions from the above discussion is that the statistical AR(1) and

UR(1) models are two different models whose inferential components, based on their

likelihood functions, revolve around regular sampling distributions and none of the

conundrums [C2]-[C4] arises. A pragmatic approach to confirm these results is to

use Monte Carlo simulation beginning with exploring the estimation of the statistical

AR(1) and UR(1) models to confirm their statistical parametrizations θ and θ

in Tables 5 and 7, respectively, and then delve into their testing components.

Given the non-weak exogeneity of −1 for both models, the simulated data are
generated via ( −1;φ) in Tables 4 and 6, respectively, using pseudo-random
numbers for u:=( −1)>vN (0 I)  =1   and applying the transformation

(Λu+μ()) where V=ΛΛ
> and Λ is a lower triangular matrix to generate:

Z:=( −1)>=(ΛU + μ()) v N (μ()V)  =1 2   (41)

for  replications used to explore their estimation and testing inference procedures.
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The values for the primary and model parameters in Table 11 are chosen to ensure

that the ‘true’ AR(1) and UR(1) models are as similar as possible, but potentially

distinguishable via the signs and magnitudes of 1 1 and 21
2
0.

Table 11: AR(1) vs. UR(1) statistical models (Tables 5 and 7)

Primary parameters:( −1;φ) Model param.:(|−1;φ1)
AR(1): 0=2 1=8 2=0 (0)=15 (1)=1425 1=10 0=86 1=04 21=1463

UR(1): 0=2 1=8 2=-04 (0)=15 (1)=15 1=95 0=84 1=-08 20=15

Tables 12 and 13 show the simulation results for the statistical AR(1) and UR(1)

models, respectively, based on=10 000 replications of samples of size =100. These

results confirm the parametrizations θ and θ in Tables 5 and 7 since the over-

all means, 1


P

=1
b(y) =1 2 3 4, of the approximate sampling distributions of

the OLS estimators are close enough to the true values in Table 11, accounting for

standard deviation and the finite sample biases; see Kiviet and Phillips (1992).

Table 12: OLS estimates of the AR(1)

True model: =86+04+95−1+0 0vN(0 1463)
Estim. mean std. dev. min max skew. kurtosisb0 914 149 151 1216 607 4617b1 067 046 019 0174 916 4548b1 899 059 594 1008 −914 4587b20 142 021 072 0193 476 3079

Table 13: OLS estimates of the UR(1)

True model: =84−08+−1+1 1v N(0 15)
Estim. mean std dev. min max skew. kurtosisb0 910 367 −444 1636 0085 3032b1 −083 014 −145 −033 0003 3107b1 999 004 0983 1015 −007 3044b21 1456 210 0771 2362 0281 3111

The improved accuracy of the UR(1) estimates (Table 13) stems from its higher

rate of convergence in distribution () stemming from the presence of the unit root;

see Hamilton (1994). Although the Maximum Likelihood estimates of the AR(1)

parameters enjoy better accuracy than the OLS due to the built-in restrictions (1−1)
and (1−21)0 in (36), the OLS results are reported to render the comparisons with
the traditional unit-root literature more relevant.

Table 14 summarizes the approximate sampling distributions of the t-tests

(y; )=[(b−∗)(b)] for ∗-the true value, using the data in Table 11, and con-
firms the above comments. As expected, they are all approximately distributed as

N(0 1). The power P(1) for 1∈[9 99] of (y;1), =05 reminds one of a typical
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t-test (Table 15) and not a traditional t-type unit root test, where “...(the) power is

usually less than 30% for 1∈[090 10) and =100” Phillips and Xiao (1998), p. 22.

Table 14: =84−08+−1+1 1vN(0 15)-simulated t-tests
Test stat. mean std dev. min max skewness kurtosis

(y; 0) −4013 1038 −4124 3742 057 3056

(y; 1) −0035 999 −3680 4170 −010 3053

(y;1) −0008 1011 −4118 4065 001 3095

The results of the t-tests in Table 14 indicate that the AR(1) model affirms the

unit root imposed by the UR(1) model and suggest that the standard t-test for:

0: 1=(1−) vs. 1: 1(1−) for 0 (42)

is valid, and for the simulated data does not reject 0 for ≤001 at traditional
significance levels . Table 15 shows that the power of the t-test is typical for any

discrepancy in the interval 1∈[9 1)

Table 15: Power of (y;1) for =05

1 90 92 93 95 .96 97 99

P(1) 981 962 944 889 858 821 767

The above simulation results also suggest that testing ‘near’ unit—roots (Chan and

Wei, 1987, Phillips, 2023) makes sense only for the one-sided hypotheses in (42) in

the context of the AR(1) model, using standard t-type tests with sufficient power as

shown in Tables 14-15. To affirm that, consider generating simulated data using the

UR(1) in Table 13 and estimating the AR(1) =0+1+1−1+0, ensuring that
the latter is statistically adequate, in the sense that thorough M-S testing indicates

no significant departures from assumptions [1]-[4]; see Andreou and Spanos (2003).

The results in Table 16 indicate that the estimated parameters of the AR(1) and

UR(1) models are approximately identical (allowing for small  biases), with the

AR(1) model affirming the unit root for any ≤001.

Table 16: ∆=84−08+1 1vN(0 15) simul. data
UR(1): ∆=839

(250)
−081
(004)

+b1 b21=1472
AR(1): =910

(388)
−083
(012)

+999
(004)

−1+b0 b20=1456
3.5 AR(1) and UR(1) can be observationally equivalent

A closer look at the results in Table 16 provides strong hints that for 1 close enough to

unity, the AR(1) and the UR(1) models, although non-nested, can be (approximately)

observationally equivalent in the following sense:

(i) 1=(1−), for a small 0 (ii) the AR(1) and UR(1) models are non-nested,
(iii) both models are statistical adequate for the same data y0, i.e. they account
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‘equally well’ for the heterogeneity in data y0.

To explore that, let us simulate∆=1+1  and estimate =0+1+1−1+0,
ensuring that the latter is statistically adequate. The results in Table 17 suggest that

the AR(1) and UR(1) models are (approximately) ‘observationally equivalent’ in the

sense that they account for the heterogeneity in data y0 equally well.

Table 17: ∆=800+1 1vN(0 15) simul. data

UR(1): ∆=799
(122)

+000
(004)

+b1 b21=1472
AR(1): =836

(405)
+080
(038)

+900
(056)

−1+b0 b20=1396
Surprisingly, the observational equivalence is retained even when the estimated

AR(1) model is without a trend, affirming the unit root of the UR(1) model:
UR(1): ∆=799

(122)
+ b1
(1213)

 AR(1): =876
(251)

+999
(006)

−1+ b0
(1213)



More surprising is the case where the simulated data are generated by the AR(1)

in Table 12, with the OLS estimates of the AR(1) and the UR(1) models in Table

18 indicating an (approximate) observational equivalence since 1'0 in the UR(1)
model. This suggests that in such cases of (approximate) observational equivalence,

the choice between the AR(1) and the appropriate UR(1) model should be based on

other grounds, including goodness-of-fit/prediction, invariance to policy simulations.

Table 18: =860+04+95−1+0 0vN(0 1463)

AR(1): =910
(181)

+087
(042)

+897
(055)

−1+b0 b20=1396
UR(1): ∆=801

(053)
+000
(001)

+b1 b21=1491
It is important to emphasize that there is no incongruity between conditions

(ii) and (iii) since (ii) the non-nestedness relates to the probabilistic structure of

{ ∈N} and (iii) relates to the statistical adequacy of the AR(1) and UR(1)
models for the same data y0. In light of that, the observational equivalence defined

by (i)-(iii) is very different from the traditional ‘near observational equivalence’ since

neither of the conditions (ii) are (iii) play any role in the latter; see Phillips and

Perron (1988), Cochrane (1991), Blough (1992), Faust (1996) inter alia.

The above analytical and simulation results call into question the pertinence of

D-F unit-root testing and suggest that the choice between the AR(1) and UR(1)

models should be based on statistical adequacy grounds after thorough M-S testing

does not detect any departures from their respective assumptions [1]-[5] for data y0;

see Spanos (2018). When both models are statistically adequate for the same y0, one

could choose between them on other grounds, including goodness of fit/prediction,

substantive adequacy, and robustness to policy changes, or use non-nested testing;

see Vuong (1989). Then again, one could test the unit root hypothesis 1 in the

context of a non-stationary AR(1) model that (actually) nests the related UR(1)

model, proposed next, using a traditional likelihood-ratio and a score tests based on

standard sampling distributions, free from conundrums [1]-[2].
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4 A non-stationary AR(1) nesting a UR(1) model

To affirm the key role of well-grounded models, let { ∈N} be Normal (N), Markov
(M), mean heterogeneous (0+1) combined with separably heterogeneous covari-

ance, giving rise to the bivariate distribution ( −1;φ):µ

−1

¶
vN

µ∙
0+1

0+1(−1)
¸


∙
(0)· (1)·(−1)

(1)·(−1) (0)·(−1)
¸¶

 ∈N (43)

yielding the non-stationary AR(1) model with a Trending Variance (TV) in Table 19.

This model differs from the AR(1) in Table 5 in three crucial respects: (i) 1∈[0 1]
(ii) it is non-stationary since 2() is heterogenous, a convex combination of , with

weight 21∈[0 1], and (iii) for 1=1→ 0=1 =0 
2()=(0), nesting:

UR(1): =1+−1+1 (1|(−1))vNMd(0 (0)) ∈N (44)

Several special cases of the AR(1)-TV model (Table 19) follow by imposing zero

restrictions on the primary parameters (0 1).

Table 19: Non-stationary AR(1)-TV model

Statistical GM: =0+1+1−1+0 ∈N.
[1] Normality: ( −1)) vN( ) ( −1)∈R2
[2] Linearity:  (|(−1))=0++1−1
[3] Heterogeneity:   (|(−1))=(0) [21+(1−21)] :=2()
[4] Markov: { ∈N} is a Markov process,
[5] t-invariance: θ:= (0 1 1 (0)) are not changing with 

where 0=0(1−1)+11∈R 1=(1−1)1∈R
1=

(1)

(0)
∈[−1 1] 2()=(0) [21+(1−21)]∈R+

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
∈N.

Model 1. Consider the special case of the AR(1)-TV in Table 19 when 0=1=0:

=1−1+ (|(−1))vNMd(0 2()) ∈N
1=

(1)

(0)
∈[−1 1] 2()=(0) [21+(1−21)]∈R+

Model 2. Consider the special case of the AR(1)-TV in Table 19 when 1=0:

=0+1−1+ (|(−1))vNMd(0 2()) ∈N
0=(1−1)0∈R 1=(1)

(0)
∈[−1 1] 2()=(0) [21+(1−21)]∈R+

Model 3. Consider the special case of the AR(1)-TV in Table 19 with 0=0:

=0++1−1+ (|(−1))vNMd(0 2()) ∈N
0=11∈R =(1−1)1∈R 1=(1)

(0)
∈[−1 1] 2()=(0) [21+(1−21)]∈R+

(45)

A simple extension of the AR(1)-TV model in Table 19 is to increase the de-

gree of the trend polynomial to any 1 and the number of lags to 1 using the

reparametrized AR()-TV formulation, to isolate the (potential) unit root:

=0+
P

=1 
+1−1+

P−1
=1 ∆−+

¡
|(Y0

−)
¢
vN(0 2()) ∈N
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where Y0
−:=(1  ) It should be stressed that  and  are chosen on statistical

adequacy grounds; the validity of the assumptions analogous to [1]-[5] (Table 19).

Although the primary reason for the statistical AR(1)-TV family of models is to

shed light on the statistical conundrums [C1]-[C4] (section 1.3), the obvious question is

whether these models could potentially be used to account for the chance regularities

exhibited by real data. The t-plot of simulated data from the UR(1)-TV model with

a trend (table 18, 0=2 1=5) in Figure A1 (Appendix C), when compared with the

t-plot of the lnGDP (US quarterly data, 1947-2007) in Figure A2, seems to exhibit

very similar chance regularity patterns. The simulated data for the AR(1)-TV model

3 in (45) for 1'1 in Figures A3-A4 indicate that the t-plots are very similar to
fig. A1 but a bit more ragged. They become even more familiar for =0, where the

raggedness is more visible. Figures A5-A6 show the t-plot of simulated data based

on 0=2 1=5 (0)=1 with (1)=90 and (1)=85

4.1 Estimation: AR(1)-TV and UR(1) models

The estimation of the family of AR(1)-TV and the corresponding UR(1) models is

straightforward. Consider the problem of estimating AR(1)-TV and the correspond-

ing UR(1) models analogous to the D-F (A)-(C) formulations under 0: 1=1 and

1: 11 The unrestricted (1) AR(1)-TV model 1 is:

M1: =1−1+ vNMd(0 2()) 2()=(0) [21+(1−21)]  ∈N (46)

whose matrix formulation of (46), using the y=Xβ + u notation for =1 2   is:

y=y−11+u y:=(1 2  )> X:=(0 1  −1)>

(y|X)=Ω(1 (0))=(0)·V(1) 6= (0)·I
V(1)=diag [[

2
1+(1−21)] [21+2(1−21)]  [21+(1−21)]] 

(47)

Given that Ω(1 (0))=(0)·V(1) the model in (46) is non-linear in the para-
meter 1, and thus the Maximum Likelihood (ML) of estimation takes the form of

Feasible Generalized Least Squares (FGLS)-type estimator:b1= ¡X>V−1(b1)X¢−1X>V−1(b1)y b(0)= 1

bu>V−1(b1)bu bu=y−Xb1

derived by numerical optimization. The restricted (0) AR(1)-TV model 1 is:

M0: =−1+ vNMd(0 (0)) ∈N
and thus the ML estimator of (0) will be: e(0)= 1



P

=1 (∆)
2


The unrestricted (1) AR(1)-TV model 2 is:

M1: =0+1−1+ vNMd(0 2()) ∈N
and thus,X:=(1y−1) 1:=(1 1  1)

>, β:=(0 1)>, using the y = Xβ+u framing.
The restricted (0) AR(1)-TV model 2 coincides with that of model 1. The

unrestricted (1) AR(1)-TV model 3 is:

M1: =0++1−1+ vNMd(0 2()) ∈N
and thus, X:=(1 ty−1) β:=(0  1) where t:=(1 2  )

>
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The restricted (0) AR(1)-TV model 3 is:

M0: =1+−1+  v NMd(0 (0)) ∈N
and thus the ML estimators will be: e1= 1



P

=1∆ and e(0)= 1


P

=1(∆−e1)2.
It is important to emphasize that the appropriate model for unit-root testing

is chosen on statistical adequacy grounds, i.e. its assumptions, analogous to [1]-[5]

(Table 19), are valid for the particular data y0

4.2 Unit-root testing in the context of an AR(1)-TV model

The AR(1)-TV model 3 in (45) with θ:=(1 1 (0)) is used to derive a Likelihood

Ratio (LR) and a Lagrange Multiplier (LM) (Score) test for the hypotheses:

0: 1=1 vs. 1: 11 (48)

since it balances generality with fewer primary parameters rendering the Monte Carlo

simulations that follow more informative.

4.2.1 A unit root Likelihood Ratio (LR) test

The LR unit root test of (48) in the context of the AR(1)-TV model 3 in (45) is:

−2 ln(y)=(ln e2− ln b2(b1 b1))−P

=1 ln(b21(1−)+) 1={y:−2 ln(y)};
see Appendix B for the derivations. Its asymptotic distribution is −2 ln(y) 0v


χ2(2)

where =
R∞


() and () denotes the chi-square density function, under certain

regularity conditions; see Gourieroux and Monfort (1996).

4.2.2 A unit root Lagrange Multiplier (LM) or Score test

For the AR(1)-TV model 3 in (45) consider a Lagrange Multiplier (Score) test for the

hypotheses in (48) takes the form (Appendix B):

(y)=
( 12 

=1
+ 12 

=1 [2−2])2
[2


=1(−)2+( 12 )
=1(

−)2]  1={y: (y)} (49)

where :=[1(1−)+−1]  :=(1−) and (y)
0v

χ2(1) under certain regularity

conditions; see Gourieroux and Monfort (1996). A related form of the LM test, based

on test statistic
p
(y)

0v

N(0 1) is often preferable for small samples since its

asymptotic distribution is more accurate; see Kiviet and Phillips (1992).

The test
p
(y) in (49) can be viewed as a combination of two significance

tests. The first relates to testing 0: (1−1)=0 vs. 1: (1−1)6=0 using:
(∆−e1) =(1−1)e+1

e:= [e1(1−)+−1]  (50)

where the estimated coefficient of e is: (c1−1)= 
=1


=1(

−)2=


=1(
−)(∆−1)
=1(

−)2 

which coincides with the test statistic proposed by Schmidt and Phillips (1992).

The second component of
p
(y) in (49) relates to another t-type test of the

form: 0: 1=0 vs. 1: 1 6=0 based on the auxiliary regression:
(∆)

2=0+1(1−)+2 ∈N (51)

which comprises the contribution relating to 2() a key component of
p
(y).
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4.3 The power of the LR and LM tests

The AR(1)-TV model 3 in (45) differs from the traditional D-F AR(1) model in so

far as it nests parametrically the corresponding UR(1) model. To bring out the direct

connection between the power of the above LM and LR tests and the nestedness of

the AR(1) and UR(1) models, we evaluate the actual type I error and power of these

tests using Monte Carlo simulations.

The simulations revolve around ( −1;φ) in (43) and are generated using a
procedure analogous to that in (41) to engender:

Z:=( −1)> v N (μ()V())  ∈N (52)

For comparison purposes, the size and power of the D-F tests are also evaluated

as an ‘indicator’ of the more elaborate variations/extensions of the traditional unit-

root tests; see Banerjee et al. (1993), Choi (2015), Pesaran (2015). It should be

emphasized that the extensions assigning an ARMA(p,q) type structure to the error

term are beside the point since a crucial precondition for the validity of any test is

the statistical adequacy of the invoked statistical model for the particular data y0,

which renders such conjectural extensions irrelevant for the simulations the follow.

To bring out the crucial importance of using ML estimation, the histogram of the

MLE estimator of 1=1 is given in figure A9 (Appendix C) and contrasted with that

of the OLS estimator in Figure A10, the latter being considerably more dispersed.

The smoothed histograms of the LR (figure A11) and
√
LM (figure A12, Appendix

C) statistics indicate good approximations of their respective asymptotic sampling

distributions, ensuring reliable approximations for the relevant error probabilities.

Table 20 summarizes the size and power properties of the LR, the
√
LM and the

Dickey-Fuller (D-F) unit-root tests. Note that the D-F unit root tests in Table 20

are based on the aPP AR(1) model with a trend. In contrast, the proposed LR and

LM unit root tests are based on the AR(1)-TV model 3 in (45).

=0++1−1+ vNMd(0 2()) ∈N
Table 20: Power of LR,

√
LM and D-F tests∗

LR test LM test D-F

1Â  01 025 05 10 01 025 05 10 05

1=1 .011 .024 .046 .09 .009 .024 .051 .103 .052

1=99 .407 .537 .642 .745 .343 .503 .638 .769 .041

1=98 .733 .828 .886 .935 .624 .767 .861 .931 .046

1=95 .957 .978 .987 .994 .863 .934 .968 .988 .078

1=90 .992 .997 .999 .999 .927 .971 .989 .996 .189

1=85 .998 .999 .999 1.00 .944 .978 .992 .997 .381

1=80 1.0 1.0 1.0 1.0 .948 .980 .994 .998 .621
∗1=4 =100 =20000

(i) All three tests have good size (observed ) properties since the nominal and

actual error probabilities are close.
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(ii) The LR unit-root test shows marginally better power properties than the
√
LM

test primarily because the LR is constructed using information relating to both the

null 0: 1=1 and the alternative 1: 11 hypotheses.

(iii) Both the LR and
√
LM unit-root tests exhibit the power of chi-square and

Normal-type tests under NIID, which is far superior to that of the D-F test.

(iv) The second component
P

=1 (e2−e2) of the √LM test in (49) can be used

to explain why the power of the D-F unit-root test is similar to the D-F (B) in Table

1, suggesting that the presence of 2()=(0) [21+(1−21)] has no sizeable effect on
the power properties of the D-F test, as expected.

(v) To forfend any suspicions that the high power of the LR and
√
LM stems from

the presence of the trend, the size and power properties of the LR and D-F unit-root

tests based on the AR(1)-TV model 2 (no trend) are compared in Tables 21-22.

=0+1−1+ vNMd(0 2()) ∈N
Table 21: Power of the LR test∗

1Â  .01 .025 .05 .10

1=10 .012 .027 .049 .097

1=99 .415 .542 .643 .744

1=98 .736 .829 .888 .934

1=97 .875 .927 .956 .976

1=96 .933 .963 .979 .990

1=95 .960 .979 .989 .994

1=9 .993 .996 .998 .999

1=85 .998 .999 1.00 1.00
∗=40000, =100; 1=2;
(0)==2;  (0)=0; (0)=1

Table 22: Power of the D-F test∗

1Â  .01 .025 .05 .10

1=1 .010 .024 .051 .098

1=99 .011 .027 .056 .113

1=98 .013 .034 .066 .132

1=95 .026 .063 .125 .232

1=90 .090 .196 .330 .523

1=80 .525 .746 .882 .966

1=70 .935 .986 .997 .999

1=60 .998 1.00 1.00 1.00
∗=40000, =100; =2;
0=(1−1); (0)=1

In conclusion, it should be noted that the above simulation results depend, to a

certain extent, on the design and the parameter values chosen. However, after varying

the parameter values within reasonable limits, the above conclusions turned out to

be sufficiently robust to be considered typical.

5 Summary and conclusions

A case has been made above that using the aPP perspective to guide modeling infer-

ence with data y0 for the AR(1): (A)-(C) models in Table 1 has given rise to several

conundrums, including [C1] non-standard distributions and [C2] the low power of

D-F type unit root tests for 1 near 1. The above analytical and simulation results

suggest that these conundrums stem primarily from the aPP AR(1) models in Table

1 being probabilistically incongruous (belying Kolmogorov’s existence theorem), as

well as statistically misspecified since the validity of the probabilistic assumptions

[1]-[5] of the statistical AR(1) and UR(1) models in Table 8 is invariably ignored.

These flaws distort/belie the joint distribution (y;θ) θ∈Θ, of { ∈N} giving
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rise to non-optimal inference procedures and inducing sizeable discrepancies between

the actual and nominal error probabilities, undermining the reliability of inference.

The statistical perspective, providing the missing link between the AR(1) models

in Table 1 and the real-world mechanism that generated data y0 reveals that failure

to satisfy the existence theorem implies that no single processes { ∈N} that
underlies both the AR(1) and UR(1) models in Tables 1 exists. Instead, there are

two different processes underlying each of the AR(1): (A)-(C) models, giving rise to

two distinct and non-nested statistical AR(1) and UR(1) models. Their likelihood-

based inferential components are grounded on standard sampling distributions, and

none of the conundrums [C2]-[C4] arises. This suggests that the choice between the

AR(1) and UR(1) models should be based on statistical adequacy grounds. It turns

out, however, that the two models can be observationally equivalent for 1 near 1,

when both models are statistically adequate for the same data y0, in which case

the choice could be made on other grounds, including goodness-of-fit/prediction and

substantive adequacy. When one of the proposed non-stationary AR(1) models that

nest the corresponding UR(1) models turns out to be statistically adequate for data

y0 1=1 can be tested using likelihood-based tests free from conundrums [C1]-[C2].

The above results also call for a re-evaluation of the empirical modeling and in-

ference, not only of the AR(p) model but also that of the statistical VAR(p) model

(Spanos, 1990a) as it relates to stipulations [S1]-[S2], as well as a re-assessment of

the cointegration literature using the statistical perspective. Such re-evaluations are

likely to be strongly resisted because the call for supplementing the aPP with the sta-

tistical perspective on modeling and inference with data y0 appears superfluous from

their aPP standpoint. However, the statistical perspective is crucial when any aPP

model, M(y) ϕ∈© is used for inference, since what matters for that is: (a) the
process { ∈N} underlyingM(y) θ∈Θ is well-defined, and (b) its probabilistic
assumptions are valid for data y0, which are sidestepped by the aPP perspective.
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6 Appendix A: The ‘asymptotic rendering’ of AR(1)

To avoid repetition, the discussion focuses on the AR(1)-(C) model:

=0+1+1−1+ vNIID(0 2) ∈N, (53)

since the other two models (A) and (B) are special cases arising by imposing
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zero restrictions on (0 1 2)  The stochastic difference equation in (53) is ‘solved

using recursive substitution to yield (Hamilton, 1994, Enders, 2004):

=

10+0

¡P−1
=0 


1

¢
+1

¡P−1
=0 


1(−)

¢
+
P−1

=0 

1− ∈N (54)

This can be used in conjunction with assumptions [i]-[iv] in (17) to derive:

()=

1(0)+0

¡P−1
=0 


1

¢
+1

¡P−1
=0 


1(−)

¢


( + )=
2+| |
1  (0)+

2
| |
1

³P−1
=| | 

2
1

´
 | |≥0

(55)

It turns out that the summations yield different answers for |1|1 and |1|=1
6.1 The AR(1) model: |1|1
Evaluating the summations in (55) for |1|1 yields:P−1

=0 

1=
(1−1)
1−1 

P−1
=0 


1(−)=(

+11 −1)+(1−1)
(1−1)2 

P−1
=0 

2
1 =
(1−21 )
1−21

 (56)

giving rise to the first two moments of { ∈N}:
() =

1(0)+0(
1−1
1−1 )+

11(

1−1)

(1−1)2 +
1

(1−1) 

( +) =
2+| |
1  (0)+

2
0

| |
1 [(1−21 )  (1−21)] | |≥0

(57)

indicating that both moments are -varying, rendering { ∈N} nonstationary.
The conventional wisdom, going back to Wold (1938), invokes the stipulation hfi

‘as →∞’ (Diebold and Nerlove, 1990):
lim
→∞

P−1
=0 


1=

1
1−1  lim

→∞
P−1

=0 

1(−)= (1−1)−1

(1−1)2  lim
→∞

P−1
=0 

2
1 =

1
1−21



to yield the so-called ‘asymptotic rendering’ of the moments in (57) (Hamilton, 1994):

lim
→∞

()=
0
1−1−

11
(1−1)2+

1

(1−1)  lim
→∞

 ()=(
2

1−21
) lim

→∞
( +1)=

2( 1
1−21

)

The above resolution of the -varying moments problem is contrived and proba-

bilistically ad hoc. It inserts (unnecessarily) 0 into the sample Y and then replaces

the enlarged index set N{0}:=(0 1 2   ) with Z:=(0±1±2 ± ), which
seems particularly dubious for economic time series. Worse, it has nothing to do with

the traditional asymptotics ‘as →∞’, since →∞ takes the index  backwards to

−∞, beclouding the fact that the -varying problem in (57) is an artifact stemming

from misusing the aPP perspective to guide empirical modeling and inference.

For a pertinent probabilistic ‘solution’ to the t-varying problem consider a simple

rearrangement of the terms in (57) to separate 
1 shown below:

() =
1(0)+(

0
1−1 )−

0

1

1−1−
11

(1−1)2 +
1

+1
1

(1−1)2+
1

(1−1)=

= 
1

h
(0)−( 0

1−1−
11

(1−1)2 )
i
+

0
(1−1)−

11
(1−1)2+(

1
(1−1))=

=
1 [(0)−0] +0+1

(58)
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where the model parameters relate to the moments of { ∈N} via:
0=[{0(1−1)}−11(1−1)2] 1=[1(1−1)] (59)

By viewing 0 as a typical element of the process { ∈N} with ()=0+1,

∈N{0} implies (0)=0, which addresses the -varying problem. As expected from
the statistical perspective, ()=0+1 coincides with that of ( −1;φ) in Table
4. When (59) is solved for 0 and 1, yields the parametrizations in Table 5.

Similarly, rearranging the terms of ( +) in (57) to isolate 
2
1 yields:

( +) =
2+| |
1  (0)+

2


| |
1 (

1−21
1−21

)=

=
| |
1

n
21

h
 (0)−( 2

1−21
)
i
+(

2
1−21

)
o
 | |≥0 (60)

which indicates that for  (0)=(
2
1−21

):=(0) ( +)=
| |
1 (

2
1−21

), yielding:

 ()=(
2
)1−21))=(0) and ( −1)=1(0)=(1) ∈N (61)

Similarly, treating 0 as a typical element of { ∈N{0}}, i.e. for (0)=0
 (0)=(0), the -varying problem disappears, and solving 1(0):=(1) and

[2(1−21))=(0) for 1 and 2 yields the parametrizations of the key parameters

1=[(1)(0)] 
2
=(0)(1−21) (Table 5).

6.2 The UR(1) model: |1|=1
In the case |1|=1 the summations in (56) yield:P−1

=0 

1=

P−1
=0 


1=(−1)

P−1
=0 


1(−)=1

2
 (+1) 

P−1
=0 

2
1 =

and thus (54), after replacing 0 1 with 0 1 to avoid confusions, yields:

() =(0)+0+1
¡
1
2
 (+1)

¢
=0+1+2

2 ∈N (62)

where 0=(0) 1=
¡
1
2
1+0

¢
 2=

1
2
1 (63)

Using (62), the covariance of (−())=
P−1

=0 − is:

( −1)=
£
(
P−1

=0 −)(
P−1

=1 −)
¤
=
P−1

=1 (
2
−)=

2
(−1)

For (0)=2 this implies that:  ()=(0) ( −1)=(0)(−1)
where the choice of (0)=0 and  (0)=0 stem again from viewing 0 as typical

element of the sampleY0 The first two moments indicate that { ∈N} is a Wiener
process (Table 6), yielding the statistical UR(1) model in Table 7.

In conclusion, it is important to emphasize that the above derivations give rise to

the statistical parametrizations associated with the AR(1)-(B) model when 1=2=0

for the statistical AR(1) model in Table 2 and 2=0 for the UR(1) model in Table 3.

7 Appendix B: Derivations - the LR and LM tests
AR(1)-TV model 3 in (45): M1: =0++1−1+ vNMd(0 2()) ∈N
7.1 Likelihood Ratio (LR) test

The unrestricted likelihood function (LF) takes the form:

(bθ) =−

2

£
(2)−


2

¤ £Q

=1 b2(b1 b1)(b21(1−)+)¤−1
2 

where the unrestricted MLEs are denoted by ‘b’.
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The restricted likelihood is: (eθ)=−
2

¡
(2)−


2

¢
(e2)−

2  eθ:=(e1 1 e2)
where the restricted MLEs are: e2= 1



P

=1(∆−e1)2 e1= 1


P

=1∆

The LR test statistic takes the general form:

(y)=
max
∈Θ0

(())

max
∈Θ

(())
=

()
() =

−

2 [(2)−


2 ][2]−

2

−

2 [(2)−


2 ][

=1[2(11)][21(1−)+]]− 12 =

=
£e2¤−

2
£Q

=1

£b2(b1 b1)¤ (b21(1−)+)¤ 12 
−2 ln(y) =(ln e2− ln b2(b1 b1))−P

=1 ln(b21(1−)+)
where the last component takes the explicit form:P

=1 ln(
2
1(1−)+)= ln ((1−1) (1+1))+ ln

h
Γ
³

(21−1)−1
(1−1)(1+1)

´
Γ
³
− 1
(1−1)(1+1)

´i


7.2 Lagrange Multiplier (LM) test

Derivation. The log-likelihood function of the AR(1)-TV model in Table 19 is:

ln(θ)=const.−
2
ln(2)−1

2

P

=1 ln − 1
22

P

=1

2

 θ:=(1 1 

2)

:= [
2
1(1−)+]  :=(−11−(1−1)1−1−1)

The first derivatives leading to the unrestricted MLEs are as follows:

 ln
2

=− 
22
+ 1
24

P

=1

2

⇒ b2(b1 b1)= 1



P

=1

(−1[1(1−)+]−1−1)2
[21(1−)+] 

 ln
1

= 1
2

P

=1(
1(1−)

2
) [2−2] + 1

2

P

=1

[1(1−)+−1]




 ln
1

= 1
2

P

=1
[1(1−)+]


⇒ b1(b1)=µP

=1
[1(1−)+]2
[21(1−)+]

¶−1µP

=1
[1(1−)+](−1−1)

[21(1−)+]
¶


note that the first order conditions for (1 
2) can be solved explicitly, but that of

1 can only be solved numerically. The first derivatives under 0: 1=1:
 ln
2

¯̄
1=1

=− 
22
+ 1
24

P

=1 
2
 

 ln
1

¯̄̄
1=1

= 1
2

P

=1 [
2
−2] + 1

2

P

=1 

 ln
1

¯̄̄
1=1

= 1
2

P

=1  where := [1+−1]  :=(1−)

yielding the score: η(θ):=

µ µ
 ln()

2

¯̄̄
1=1

¶


µ
 ln()

1

¯̄̄
1=1

¶


µ
 ln()

1

¯̄̄
1=1

¶ ¶


The estimated first derivatives under 0: 1=1 are:

 ln()
2

¯̄̄
1=1

=− 

22+ 1

2(2)2 P

=1 e2  where e=(∆−e1) e1= 1


P
=1

∆

 ln()
1

¯̄̄
1=1

= 12 P

=1 
£e2−e2¤+ 12 P

=1
ee where e2= 1



P
=1

(∆−e1)2
 ln()
1

¯̄̄
1=1

= 12 P

=1 e where e:= [e1+−1]  :=(1−)
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and thus the estimated score vector η(eθ):=η(bθ)¯̄̄
1=1

takes the form:

η(eθ):=³ 0 ( 12 P

=1
ee+ 12 P

=1 
£e2−e2¤) 0

´


The second derivatives of the log-likelihood function are:
2 ln
4

= 
24
− 1

6

P

=1

2



2 ln
21

=−P

=1

h
(1−)


i
+2
P

=1
[1(1−)]2

2
− 1

2

P

=1

[1(1−)+−1]2


−
−41

2

P

=1

(1−)[1(1−)+−1]
2

+ 1
2

P

=1 (1−) 
2


2
−421

2

P

=1

(1−)22
3


2 ln
21

=− 1
2

P

=1
[1(1−)+]2




2 ln
21

=− 1
4

hP

=1

[1(1−)+−1]


+
P

=1 [1(1−)] 
2


2

i


2 ln
21

=− 1
4

P

=1 [1(1−)+]  
2 ln
11

=−2
2

P

=1
[1(1−)+][1(1−)]

2
+ 1

2

P

=1
[(1−)]


− 1

2

P

=1

[1(1−)+−1][1(1−)+]



The Fisher information matrix under 0:1=1 is:

I(θ)|1=1 := 

⎛⎜⎝−
2 ln
21

2 ln
11

2 ln
1
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Hence, for I(eθ):=I(bθ)¯̄̄
1=1

 the LM test statistic is:

(y)=η(eθ)> ³I(eθ)´−1 η(eθ) =
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It is interesting to note that the determinant of the restricted information matrix:
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which brings out a direct connection between the det(I(θ)|1=1) and (y).

8 Appendix C: Simulated Data plots

8.1 Simulated data t-plots for the AR(1)-TV model

Fig. A1: =5+10−1+ vN(0,1)
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Fig. A2: lnGDP (quarterly data 1947-2007)
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Fig. A3: =515+005+99−1+() Fig. A4: =575+025+95−1+()

Fig. A5: =65+05+9−1+() Fig. A6: =725+075+85−1+()

8.2 Simulated data plots for the LR and LM tests

Fig. A9: Histogram: MLE estimator of 1 Fig. A10: Histogram: OLS estimator of 1

Fig. A11: Smoothed histogram of LR test Fig. A12: Smoothed histogram of
√
LM test
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