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Abstract

I examine inequalities arising from biases brought by the incentives and exter-

nalities present in data markets, where a data collector ultimately provides an

end-service which is bene�cial. Agents receive di�erent prices for their data,

which is valued according to the extent that it is representative of the data of

non-participating agents. The service provider estimates the characteristics of

high-cost and minority groups with less accuracy, leading to these groups receiv-

ing lower quality services on average, and lower utility in equilibrium. Data pri-

vacy policies tend to reduce such inequalities but at the cost of consumer surplus,

while a subsidy strategy targeted at increasing the utility of those disadvantaged

by data markets increases consumer surplus but may also widen inequality.
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1 Introduction

As governments, NGOs and other organisations amass increasingly informative data on

individuals, the emergence of so-called �data inequality� is becoming an inevitability.

While there are many forms of data inequality, I consider inequalities which arise in

data markets where agents of di�erent groups participate to di�erent extents, which

leads to biases in collected datasets. This form of inequality results in organisations

providing services and treatments to a population of agents knowing less about some

groups than others.

Di�erences in participation in data markets are well documented. To cite just a few

examples, women participate in surveys at a greater rate than men (see, for example,

Otufowora et al 2021), minorities in the United States are less likely to participate in

medical trials and public health initiatives than non-minorities (Milani et al, 2021), less

educated people are less likely to participate in online surveys (Jang and Vorderstrasse,

2019) and older subjects are less likely to participate in trials and surveys that involve

smartphone applications (Mulder and de Bruijne, 2019).

These di�erences in participation imply that inequalities can arise not just in the use

of data once it is collected, but in the data collection process itself. Such inequalities

have real-world e�ects, because service providers know less about some groups than

others, which in turn leads to less e�ective policies and treatments being implemented

for these groups. For example, the National Academies of Science, Engineering and

Medicine (2022) found that di�erences in clinical trial participation is one driver for

health disparities, which cost the United States $11 trillion.

In the model here, data inequalities arise endogenously from a market in which

agents are paid by service provider for their data. The service provider o�ers a tar-
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geted service which is bene�cial to the agents based on the data collected on some

characteristic of interest. These characteristics are jointly normally distributed, and

so i's participation results in the service provider being able to better estimate j's

characteristic, even if j does not participate.

To understand the value of an agent's data to the service provider, the information

structure can be characterised as a hypothetical weighted network, which captures

the indirect and direct information learning an agent's characteristic provides at the

margin; that is, taking into account agents who have already participated. The value

of an agent's data re�ects not their abstract informativeness, but moreover the extent

to which they are representative of the characteristics of non-participating individuals.

An agent's representativeness can be expressed as a form of �intercentrality�, a

common measure found in much of network theory (see, for example, Ballester et al,

2006). Meanwhile, the price agents receive depends on both their participation cost and

how informed the service provider is about their characteristic if they do not participate,

which is tied to a form of their centrality, another common measure in networks.

The externalities associated with participation in the data collection process also

impact the nature of the data collected. Externalities arise due to the fact that other

agents' participation decisions result in the service provider learning about i's char-

acteristic, which in turn reduces i's incentive to participate. Hence, the decision to

participate by one agent crowds out the participation of other agents. This implies

that if the end service is su�ciently bene�cial, the service provider would, paradoxi-

cally, prefer the case where there are no data leakages; that is, no correlation between

characteristics.

I then turn to the question of systematic inequalities driven by di�erences in partic-

ipation. Individuals from groups with higher participation costs are underrepresented
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in the datasets collected on the data market, as incentivising them to participate is

ine�ciently costly for the service provider. Minority groups are similarly underrepre-

sented, due to the fact that, holding participation rates constant, their characteristic is

relatively less valuable to the platform's inference problem.

Policies, like GDPR, which reduce the extent to which intermediaries and platforms

can learn about agents passively are of increasing interest to policy makers. A decorre-

lation policy, which reduces data leakages to zero, would be a highly e�ective form of

such a policy. This policy is optimally equitable, in the sense that agents all receive the

same payo�, but it reduces the e�ectiveness of the service provider's targeted policies

and therefore, consumer utility.

The framework developed here lends itself naturally to a consideration of a targeted

subsidy policy, aimed at increasing the utility of groups which lose out in the original

data market. I show that in order to increase the utility of such groups, it may be

optimal for a social planner to induce other groups to participate, which increases

utility but further exacerbates inequality.

As such, our analysis of both these di�erent types of policy highlight that inter-

vention in data markets of the type analysed here often involves trading o� generating

increased surplus for the aggregate (or even speci�c groups) and equity concerns.

Literature and contribution

This paper contributes to two strands of literature: the literature on data markets and

their externalities and the literature on algorithmic fairness.

The relevant data markets literature comes in two forms. First, there is large lit-

erature on the pricing and sale of data - some relevant references include Eso and
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Szentes (2007), Babiao� et al (2012), Bergemann et al (2018) and Eliaz et al (2019). Of

particular relevance within this literature are contributions which revolve around data

collection for the purpose of price discrimination, where agents are therefore harmed

by the sale of their data - see, for example, De Corniere and De Nijs (2016), Gu et al

(2019), Montes et al (2019), with Agrawal and Goldfarb (2018) and Bergemann and

Bonatti (2019) providing comprehensive surveys of this literature.

The second branch of the data markets literature of relevance are papers which

examine externalities generated by data. Most of this literature focuses on privacy,

with MacCarthy (2011) and Fair�eld and Engel (2015) providing analysis of the negative

externalities associated with data leakages; Choi et al (2019) shows how such negative

externalities can lead to ine�ciencies and Ichihashi (2022) examines dynamic data

collection by a platform.

Within this literature, the two most relevant papers are Ichihashi (2021) and Ace-

moglu et al (2022). The former examines how di�erent consumer preferences and data

properties can in�uence the nature of the externalities generated by data markets and

hence also a�ect e�ciency, pro�ts and consumer surplus. The latter examines how

the negative externalities associated with data leakages can reduce prices for data and

increase data market participation through a �crowding-in� e�ect.

This paper contributes to (and is di�erent from) the externalities in data markets

literature in a number of ways. First, it shows that a tractable and intuitive way of

characterising the pricing and value of data is by treating the information structure as a

hypothetical network. In doing so, I provide insights into the e�ect of targeted policies

aimed at increasing data market participation.

Second, by analysing the case where agents incur costs to participate in the data

collection process, I generate new insights into real-world data markets which have
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this feature, speci�cally regarding di�erences in prices and participation across groups

when the data collector is ultimately o�ering a bene�cial service - very little of the above

literature examines this form of service, with Ichihashi (2021) being the one exception.

That paper, however, considers the case where participation is costless, with agents (at

best) giving their data away for free.

Most fundamentally, the model provides an account of which agents receive relatively

high quality services, hence generating predictions regarding data inequalities which

arise from data collection that are not present in the current literature.

This last feature of the paper also implies there is a link between it and the algo-

rithmic fairness literature, which seeks to analyse and correct inequalities generated by

machine learning techniques - see Kleinberg et al (2018) and Roth and Kearns (2019)

for an overview.

Within the literature, Kleinberg et al. (2017) examines extent to which di�erent

notions of fairness can or cannot be satis�ed simultaneously by such algorithms, Dwork

et al (2012), Kearns et al (2019) and Jung et al (2020) explores aspects of the trade-o�

between di�erent notions of fairness and e�ciency and Liang et al (2022) introduces a

Pareto frontier that captures the optimal resolution of this trade-o� for social planners

with di�erent preferences.

A common theme across all of these approaches is that the the set of covariates used

to predict characteristics is assumed to be exogenously determined, with the goal being

to examine how algorithms based on those covariates may or may not satisfy particular

de�nitions of fairness. Here, the dataset itself is endogenous, with participation costs,

data externalities and the incentives of the data collector all playing a role.

The source of unfairness in this paper, then, arises from the nature of the data col-

lection process. There are a limited number of papers which analyse the contribution of
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the data collection process to inequality, of which the most relevant are Elzayn and Fish

(2020), which models optimal data investment in both a monopolistic and competitive

settings without externalities and Abebe (2019), which highlights the importance of

data inequalities in the context of developing countries and proposes a search-engine

driven approach to reduce those inequalities.

2 Model

In this section, I set out the nature of the information structure, payo�s of market

participants and the timing of the game.

The information structure

Suppose there is a set, A, of agents, with an agent i is associated with a characteristic,

xi ∈ R and |A| = n. Let x = (x1, ..., xn)
T be a vector of characteristics which are joint

normally distributed; x ∼ N (µ̄,Σ(y)), where var(xi) = ξ2i , cov(xi, xj) = ξij and y

is the vector of secondary characteristics. The characteristic xi is private information

unless i sells their data to a service provider. Let Σ be an information structure.

Each agent has a secondary characteristic yi ∈ {y1, ..., yl}, which correspond to a

group, such that the group of agents Tj ∈ T denotes the set of all agents with sec-

ondary characteristic yj. Assume that each agent's secondary characteristic is common

knowledge. This secondary characteristic, which can be thought of as a demographic

characteristic, like race or gender, determines the correlation structure. Speci�cally,

assume that ξij(y) = ξst(y) for all i ∈ Ts and j ∈ Tt and ξ2i (y) = ξ2s (y) for all i ∈ Ts.

A service provider ultimately wishes to estimate each xi, either by buying i's data

directly or using the data of other agents. Assume throughout that
∑n−1

j |ξij| < ξ2i
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for all i and that all market participants are accurately informed about the parameter

matrix β of the following linear regression:

xi(β, εi) = µi +
n−1∑
j ̸=i

βijxj + εi (1)

where εi is normally distributed such that E[εi] = 0 and var(εi) = σ2
i , β is a zero-

diagonal n× n matrix whose ijth entry is βij and µi ∈ R measures some idiosyncratic

(but known to the service provider) features of agent i. Note that the matrix β re-

�ects the regression coe�cients conditioning on every other variable, as opposed to the

coe�cient generated when one or more variable is omitted.

For ease of exposition, I assume throughout that ξij(y) ≥ 0 for all i, j pairs, and

thus, βij ≥ 0, though the framework analysed here can easily encompass negative and

positive correlations between characteristics.

Agents' data selling choice

The agents in the model choose whether to participate (ai = 1) or not participate

(ai = 0) in the data selling game.

Let pi(a) be the price the agent receives from the service provider for their data

and τ ≥ 0 capture the value the agents' receive from the service provider's ability to

estimate their characteristic. Agent i's ex-post utility can be expressed as follows:

ui(ai = 1,a−i, pi, ci) =


pi(a)− ci − τ(xi − di)

2 if ai = 1

−τ(xi − di)
2 if ai = 0

.

The parameter ci is the cost of participation (which captures, for example, the cost of

time participating in data collection or linguistic and technical barriers to participation)
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which is assumed to be a function of i's secondary characteristic - speci�cally suppose

each agent's cost is ci = c(ys) for i ∈ Ts, where c(ys) > 0.

The service provider

The service provider has two roles: they o�er a subset of agents, A1 ⊆ A (whose

complement is A0), a take-it-or-leave it price, such that an agent i receives a price

o�er, pi; and, based on the data they collect, they provide a targeted service based on

their best estimate of i's characteristic.

Speci�cally, once the data is collected the service provider o�ers di to each agent,

whether they participated in the data collection process or not. The expected payo�

from the agent-speci�c action di is E[
∑

i(xi − di)
2]: the service provider wishes to

provide a service which is a close as possible to the characteristic of the agent. Hence,

the service provider's expected payo� can be summarised as follows:

πS(a) = E[
∑
i

(xi − di)
2|a]−

∑
i

pi(a).

Timing

The timing of the game is as follows:

1. The service provider chooses a vector of take-it-or-leave price o�ers, p;

2. agents choose whether to participate in the data market or not, generating the

vector a;

3. the service provider chooses the service vector, d.
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3 Applications

There are a number of features of the model which capture aspects of particular data

markets. Speci�cally, the data collection process is assumed to be costly, and so appli-

cations that best �t the model are those where data is actively elicited through some

collection process, rather than being a byproduct of some other process, like data cap-

tured through tracking an agent's online behaviour. Furthermore, the service provider

is assumed to be o�ering a service which is bene�cial to the agent.

In this section, I analyse some applications that closely �t the model here. As is

well-known, the use of data to make targeted decisions is becoming more and more

prevalent and in many areas it is in its infancy. Hence, the sorts of policy questions

this paper addresses will only become more relevant as time goes by, especially in areas

such as public policy where personalised data techniques have yet to be adopted into

the mainstream.

Healthcare

Personalised medicine, both at the level of groups and even individuals is becoming

increasingly viable (see Armstrong, 2017 for analysis of the link between big data and

personalised medicine and Vellekoop et al, 2022 for a literature review). The model is

well-suited to such a situation because every agent bene�ts from a healthcare provider or

drug manufacturer being able to accurately assess their response to a particular course

of treatment. Furthermore, it is generally costly to participate in medical trials, and in

many cases participants are paid non-trivial sums for that participation, with Fisher et

al (2021) �nding that the median payment for phase 1 clinical trial participation in the

United States is $3,070.
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Note also that healthcare is an area in which there are disparities in participation.

For example, racial and ethnic minorities are less likely to participate in health research

than non-minority individuals (see, for example, Milani et al, 2021) and the vast ma-

jority of trials take place in developed countries (Alemayehu, 2018). The model here

seeks to understand how data markets contribute to these inequalities.

Product recommendations

Survey data and online reviews are used to supplement more passive data in improving

recommendation systems online (see, for example, Sengupta, Srebro and Evans, 2018).

In this setting, agents prefer to be given a recommendation which most accurately

re�ects their preferences, and those preferences may be elicited by participation in a

(time) costly activity. Recommendation systems are becoming increasingly prominent

in the online space, generating potentially large welfare gains (Zhang, 2017).

However, there is evidence that such systems are prone to a plethora of biases, see,

for example, Chen et al (2020). Those authors identify a relevant bias for our purposes,

which is the idea that products which are the most popular for the majority are more

likely to be accurately estimated and, subsequently, be recommended to everyone. The

model here seeks to capture the data markets which underpin such recommendation

systems.

Employment markets

The use of data to match job seekers to employers is now common practice within that

industry (Mezzanzanica and Mercorio, 2019). To the extent to which such job matching

is preference-based, rather than skills-based, the model captures the notion that more

information will lead to better job recommendations by platforms like LinkedIn or
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Indeed, who would be the service provider in this setting.

Such job recommendation algorithms have shown biases - for example LinkedIn

themselves have found that their recommendation algorithm was biased towards people

who are more active on their platform, and such users were disproportionately repre-

sented in training data (Yin et al, 2021). The model here captures the e�ects of these

inequalities, and illustrates how they can arise in a case where a job recommendation

algorithm is trained on data acquired on an open data market.

4 Equilibrium

I characterise the equilibria of the data market and provide analysis of the pricing of

data in those equilibria.

De�nition

The strategy set S = {p,a,d} is an equilbrium if the following conditions hold:

1. p ∈ argmaxp∈{0,1}n{E[
∑

i(xi − di)
2|a,p]−

∑
i pi(a)};

2. ai ∈ argmaxa∈{0,1}ui(ai = a,a−i;p) ∀i;

3. di(a) ∈ argmaxdi∈RE[(xi − di)
2|a] ∀i.

I characterise the optimal pricing decision and the existence of equilibria below.

Data substitutability

Note that in any equilibrium, di(a) = E[xi|a] ∀i. Let χi(a) = E[
∑

i(xi − E[xi|a])2],

χ(a) =
∑

iχi(a), γi(a−i) = χ(ai = 0,a−i) − χ(ai = 1,a−i) and vi(a) be the service

provider's willingness to pay for i's data given the participation vector a.
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Lemma 1. In any equilibrium, vi(a) = γi(a−i) ∀i.

The service provider is willing to pay for i's data to the extent to which it is infor-

mative of the characteristics of i and every other agent: that is the value of i's data in

terms of the extent to which it enables the service provider to target its services more

e�ectively.

Lemma 2. Information acquisition regarding i is a substitute for information acquisi-

tion regarding j: that is, γi(aj = 0,a−i,j) ≥ γi(aj = 1,a−i,j).

If j sells their data, the total reduction in the mean-squared error associated with

acquiring i's data decreases. This holds for two reasons: �rst, learning about i is directly

informative of j, but also learning about i (weakly) decreases the service provider's

uncertainty about every other agent, which also reduces the value of i's information to

the service provider.

Existence of equilibrium

The preceding analysis suggests following Proposition relating to the existence of equi-

librium:

Proposition 1. The set of equilibria given an information structure β, Θ(β), is al-

ways non-empty. Furthermore, the payo� to the service provider is the same in each

equilibrium.

Note that, in general, there are multiple equilibria. This follows because, as per

Lemma 2, agents' participation choices a�ect the value of other agents' data, and as such

the participation choice of every other agent, a−i, potentially a�ects the equilibrium
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action of i, ai. Nevertheless, our results will hold for every possible equilibrium, unless

otherwise stated.

The second statement in Proposition 1 follows from the fact that the service provider

elicits participation with their choice of price vector. In which case, they choose poten-

tial equilibria which maximise their payo�, taking into account optimal agent partici-

pation decisions.

5 The market for information

I characterise the pricing in the data market utilising a network interpretation of the in-

formation structure. This interpretation provides insights into which agents participate

in equilibrium and the price they receive for their data.

The value of data: a network interpretation

There are two e�ects of the service provider learning the characteristic of i: a direct

e�ect whereby the service provider is able to precisely target i; and an indirect e�ect

arising from the fact that knowing xi also provides a more accurate estimate of the

characteristics of other agents.

To measure both these e�ects, we need to consider the value of knowing the action

pro�les of di�erent agents. Given equation (1) above, the following holds:

x = M(β)[µ+ ε] (2)

where M(β) = [I − β]−1 and ε is the vector of realised error terms whose ith entry

is εi. The matrix M(β) is the Bonacich centrality matrix of the �network� implied
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by the regression coe�cient matrix, β, which under, this interpretation, is a weighted

adjacency matrix.

It is well known (see Bonacich, 1987) that M(a) =
∑∞

k=0 β
k(a), which in turn

implies that j's Bonacich centrality measures the sum of the (weighted) paths in G

that begin at j, with the entries of matrix M(a) then being the sum of paths that start

at i and end at j. In this context, the centrality of an agent captures the fact that if

j and k's characteristics are unknown learning i's characteristic is informative of j and

k's characteristics directly, but it is also indirectly informative by virtue of the fact that

j's characteristic is informative of k's (and vice versa).

We are interested in cases where a subset of agents have sold their data to an

intermediary. Let β̂(a) denote a regression coe�cient matrix which only includes agents

for whom the service provider has no information (that is, agents for whom ai = 0).

Further, let x̂(a) be the vector of characteristics of those elements of the set A0 and x̃(a)

be the vector of characteristics of those agents whose information the service provider

has purchased. The following holds:

x̂(a) = M̂(a)[µ̂(a)+ ε̂(a) +D(a)x̃(a)],

where D(a) is the matrix of βijs between members of the set A0 and every other agent

and ε̂(a) is a |A0|×1 vector which includes the idiosyncratic error terms of those agents

whose data has not been sold to the service provider.

As the service provider ultimately values the extent to which data reduces the

mean-squared error of their estimate of the agents' characteristics, we will ultimately

be interested in the matrix S(a) = M̂2(a). The ijth term in this matrix measures

the sum of the even-numbered paths between i and j, and the matrix as a whole
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determines the value of the data of some agent i who is not currently participating in

the data collection process, as shown by the following Lemma:

Lemma 3. The following identity holds:

S(a)σ̂2(a)1 =

|A0|∑
i∈A0

(xi − E[xi|a])2. (3)

Equation (3) forms the basis for our analysis in the remainder of this section.

Figure 1: An information structure, where a link between two nodes represents βij =
0.05, and zero otherwise. The out of the circle numbers denote the even-path centrality
of each agent within the information structure, assuming no agents choose to sell their
data.

Equilibrium valuations and prices

We can use the above analysis to characterise the informativeness of learning an agent's

characteristic. De�ne the |A0| × 1 ϕ(a) := S(a)σ̂2(a), whose ith component is i's

even-path centrality in the graph implied by a and i's even-path intercentrality

as follows:
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θi(a−i) :=

|A0|∑
j∈A0

[ϕj(ai = 0,a−i)− ϕj(ai = 1,a−i)].

To return to the network interpretation, the even-path intercentrality of i, θi(a−i), is a

measure of the informativeness of i's data, which captures the reduction in the sum of

paths of all lengths (weighted by the idiosyncratic variances of each agent) associated

with learning xi.
1 The following Theorem then holds:

Theorem 1. Any equilibrium pair of participation and price vectors, a∗ and p∗, satisfy

the following conditions:

1) the service provider's valuation for agent i's data, vi(a
∗) = θi(a

∗
−i);

2) the price i receives for their data, p∗i (a
∗) = ci − τϕi(ai = 0,a−i) if a

∗
i = 1 and

p∗i (a
∗) = 0 otherwise;

3) a∗i = 1 i� θi(a
∗
−i) ≥ p∗i (a

∗).

The informativeness measure, θi(a
∗
−i), captures the extent to which learning xi's

characteristic will reduce the uncertainty associated with estimating the agents who

the service provider does not have direct information on, weighed by the variance of

the error term in the regression equation corresponding to those agents.

Theorem 1 establishes the principle that the value of an agent's data is not de-

termined by their abstract informativeness (i.e. their informativeness when a−i = 0;

θi(0)), but moreover the extent to which they are informative of non-participating

agents. Agents who are representative of high variance, non-participating agents are

particularly valuable in equilibrium.

Furthermore, the Theorem provides a tractable account of how to measure repre-

1Put in these terms, there is a clear link between the service provider's problem and the key group
problem within the network literature. In this literature, a central planner looks to remove a group of
N agents from a network, with the aim of reducing aggregate centrality. See Bramoulle et al. (2016)
for a recent survey.
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sentativeness at the margin. For example, when σ2
i = σ2 for all i, the measure θi(a

∗
−i)

is equal to ϕi(a−i,ai=0)
sii(a−i,ai=0)

∑
j sji, which is an analogue of the concept of intercentrality

found in Ballester et al. (2006) for the case where only even (weighted) path lengths

of the graph implied by the participation vector a∗ contribute to its calculated value.

This compares with the price vector, which is determined by i's even-pathed centrality,

ϕi(a
∗), in the same graph.

A benchmark

To aid in the understanding of Theorem 1, I consider two extreme cases; one where

costs are su�ciently low such that every agent participates in the data market, and one

where they are su�ciently large such that (at most) one agent participates:

Corollary 1. Suppose ci = c for all i. The following two statements hold: (1) there

exists a c such that if c < c then the is a unique equilibrium such that p∗i (a
∗) = c− τσ2

i

for all i; (2) there exists a c̄ such that if c > c̄, then, for an equilibrium with price vector

p
′
and participation vector a

′
, if a

′
i = 1, then p

′
i(a

′
) = θi(0).

When costs are su�ciently small, every agent i participates and their data's value is

determined by the variance of their idiosyncratic error term - in the case where the agent

does not participate the service provider loses no information about any other agent,

as they are all participating, and they are maximally informed about i's characteristic

as the set-up will allow without actually having being sold i's data. Hence, each agent

i receives the minimum possible price for their data, c− τσ2
i .

When costs are su�ciently large, a single agent (at most) participates, and their data

is valued according to its abstract informativeness. Furthermore, assuming σ2
i = σ2 for

all i, the agent who participates in equilbrium is the agent with the highest even-path
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intercentrality in the graph implied by the vector a = 0.

Example

Suppose τ = 0.25, βij = 0.05 or 0 (if there is no correlation between the two variables)

for all i, j and σi = 1 for all i and the correlation structure is as depicted in Figure 2.

Figure 2: An information structure, with the out of circle values representing the even-
path intercentralities of each node.

Suppose �rst that ci = 2 for all i. Computing the value of the even-path intercentrality

of each agent given the original information structure, it is clear that only a single agent

can be induced to participate. In which case, it is optimal for the service provider to

induce agent 3 to participate, as they have the highest intercentrality.

Now suppose that c3 = c4 = c8 = c11 = 0.5 while ci = 3 for all other i, which would

imply that the four lower cost agents will participate in equilbrium. The above analysis

makes it possible to characterise which agent receives the highest price for their data.

Calculating the even-path intercentralities for the case where the other participating

agents participate, agent 11's is highest. This re�ects the fact that while agent 3 is the
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most abstractly informative, they are less representative of non-participating agents

than agent 11. Agent 11's data is therefore valued most highly by the service provider.

Agent 11 also has the most even-path centrality by this metric - which implies that

while their data is the most valuable, they receive the lowest price for their data of

those agents who participate.

Figure 3: Prices (in blue text) and intercentralities (red) when 3, 4, 8 and 11 participate.

6 Equilibrium participation

In this section, I characterise the externalities present in data markets in which the

end use of the data is bene�cial to consumers, showing that the participation decision

of one agent has the potential to crowd-out other agents. This free-riding e�ect has

implications for how bene�cial data leakages ultimately are for the service provider and

data holders.

20



Crowding-out

Let ai and aj be strategic substitutes for a price vector p if:

ûi(a) = ui(ai = 1, aj,a−i,j;p)− ui(ai = 0, aj,a−i,j;p)

is decreasing in aj.

Proposition 2. The participation decisions, ai, aj are strategic substitutes for all i, j

pairs.

Proposition 2 implies that when the service provider is o�ering a bene�cial service,

crowding-out occurs: as the service provider is more informed of an agent's characteris-

tic when one of their peers chooses to participate, they have less incentive to participate.

As such, agents who do not participate free-ride on those who do participate, receiving

a higher payo� on account of the data leakages resulting from the sale of data by their

peers.

Crowding-out and data leakages

The free-riding e�ect analysed above raises the possibility that environments where

information leakage is high (i.e. ξij is relatively high for all i, j) could result in the

service provider receiving less information than in environments where information

leakage is low. To illustrate this e�ect, I state the following de�nition:

De�nition 1. An information structureΣ
′
has stronger data leakages thanΣ if ξ

′
ij > ξij

and ξii = ξ
′
ii for all i, j.

Given this de�nition, it is possible to consider the e�ect of crowding-out as data

leakages become more pronounced. To do so, it also worth stating:
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De�nition 2. An information structure Σ
′
is (weakly) more informative in equilibrium

than Σ if any pair of equilibrium participation vectors, a∗(Σ
′
) and a∗(Σ) are such that

χ(a∗(Σ
′
)) > (≥) χ(a∗(Σ)).

Theorem 2. Suppose Σ
′
has stronger data leakages than Σ. Then, ∃τ̄ ∈ R+ such

that if τ > τ̄ then Σ
′
is (weakly) more informative in equilibrium than Σ, with the

relation strict if, for all equilibrium participation vectors, there exists some i such that

a∗i (Σ
′
) = 0.

Theorem 2 arises from the crowding-out e�ect. As per Theorem 1, agents only

participate if their participation cost plus the bene�t associated with a better targeted

service is lower than the service provider's valuation for their data. As data leakages

become more signi�cant, the intrinsic value of selling data is reduced, as the service

provider is more informed about non-participating agents. Therefore, fewer agents

participate than they would do when data leakages are less signi�cant.

As τ increases, this reduction in participation e�ect gets stronger, and it eventually

dominates the fact that, for a �xed a, the service provider is better informed when data

leakages are stronger.

Hence, information structures which are more informative can result in the service

provider being, somewhat paradoxically, less informed, because of the free-riding e�ect

inherent to the case where the service provider o�ers a bene�cial service.

7 Groups and data inequality

In order to analyse the datasets collected by the service provider, it is useful to put

more structure on the link between costs and information structure. In doing so, it is
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possible to analyse which groups the service provider learns the most and least about,

helping to provide an account of the informational inequalities that arise.

Preliminaries: the representative group game

Consider a special case of the model which will be referred to as a representative

group game. Suppose that (as before) ξij(y) = ξst(y) for all i ∈ Ts and j ∈ Tt, but

also that βss(y) = βtt(y) for all s, t, βtt(y) > βts(y) for s ̸= t and σ2
i = σi for all i.

De�ne ns =|Ts|.

Finally, let χ̂j(a) :=

∑
i∈Tj

χi(a)

nj
be the average mean-square error of a group Tj for

a participation vector a. Assume throughout that for any equilibrium participation

vector, a∗,that χ̂i(a
∗) > 0 for all i: there is at least one agent from each group who

does not participate in equilibrium.

High cost groups

I start by analysing the extent to which the service provider is informed, on average, of

the characteristics of a higher cost group:

Theorem 3. Consider a representative group game where βks(y) ≤ βkt(y) for all k ̸=

s, t, ns = nt and c(ys) > c(yt). Then, for any equilibrium participation vector, a∗,

χ̂t(a
∗) > χ̂s(a

∗).

In the case where a group Ts is both weakly less informative and has a higher

participation cost than group Tt then fewer of group Ts agents participate in equilibrium.

As these are (weakly) less informative in the abstract, the service provider can always

improve their payo� by inducing a higher proportion of individuals in low cost groups

to participate than they do for a high cost group.
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As such, members of high costs groups are disproportionately underrepresented

in any collected dataset, which results in them receiving a lower quality service in

equilibrium.

Minority groups

Now consider the case where there is a group, Ts, who are in the minority compared

with some other group, Tt :

Theorem 4. Consider a representative group game where βks(y) ≤ βkt(y) for all k ̸=

s, t, and c(ys) = c(yt). If ns < nt then χ̂s(a
∗) < χ̂t(a

∗).

Members of minority groups participate proportionately less in equilibrium and

therefore the service provider is less informed about them on average than larger groups.

This follows from the fact that, �xing the proportion of active agents in each group, a

member of a minority group's data is less informative than the data from a member of

a majority group, and so the service provider always prefers to negotiate with a greater

proportion of the majority group.

This result is in line with results in the algorithmic fairness literature (see, e.g.,

Kleinberg et al, 2018) and the statistical discrimination literature more broadly (see

Onuchic, 2022 for a survey) in which a utilitarian planner optimally chooses signals

that are disproportionately informative about a majority group due to the increased

value the planner receives from correctly estimating their type.
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8 E�ciency, payo�s and inequality

This section analyses the e�ciency of equilibria, as well as characterising the di�erences

in agents' payo�s.

E�ciency

Consider the following de�nition of e�ciency:

De�nition 3. For a given participation vector a−i, it is e�cient for i to participate

(that is ai = 1) i�:

n∑
j=1

uj(a−i, ai = 1) + πS(a−i, ai = 1) ≥
n∑

j=1

uj(a−i, ai = 0) + πS(a−i, ai = 1)

Using this de�nition, I characterise the ine�ciencies arising from the crowding-out

e�ect analysed above.

Proposition 3. An equilibrium S = {d∗,a∗,p∗} is ine�cient if there exists an agent

i such that θi(a
∗) + τϕi(a

∗
−i, ai = 0) < ci < (1 + τ)θi(a

∗).

When ci < (1+τ)θi(a
∗), the cumulative net payo� associated with ai = 1 is positive

and so it is e�cient for i to participate. However, when θi(a
∗) + τϕi(a

∗
−i, ai = 0) < ci,

the service provider cannot induce i to participate while still making a pro�t, and as

such S is ine�cient.

Proposition 3 implies that there can be under-participation in equilibrium when the

service provider o�ers a bene�cial service. This follows from the fact that agents have

an incentive to free-ride and do not take into account the positive externality that their

participation decision has on non-participating agents. Note that ci > 0 for some i is
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a necessary condition for there to be any ine�ciency in this case: if ci = 0, then every

agent would participate.

Payo�s in equilibrium and inequality

To analyse the inequalities that arise in equilibrium, it is necessary to state the payo�s

agents receive in equilibrium.

Theorem 5. Agent i's utility in an equilibrium with participation vector a∗, ui(a
∗) =

−τϕi(ai = 0,a∗
−i). Hence, if i, j ∈ Ts, a

∗
i = 1 and a∗j = 0 then uj(a

∗,p∗) ≥ ui(a
∗,p∗)

with the inequality strict if βij ̸= 0.

Every agent, whether they participate or not, receives a payo� equal to their utility

when they do not participate, which in turn is determined by the expected error the

service provider makes in estimating their characteristic, which is given by the centrality

measure, ϕi(a−i, ai = 0). Hence, if, given an equilibrium in which the service provider

learns less about i conditional on i not participating than they do about j, then i's

payo� is lower than j's.

Furthermore, Theorem 5 states that a member of a group who does not participate

is always better o� than a member of that group who participates: if i participates

in equilibrium then their utility re�ects how informed the service provider would be

about them if they were not to participate, which is necessarily less than how informed

the service provider of the characteristic of a non-participating member of i's group.

This di�erence in payo� re�ects the positive externality which i's action exerts on non-

participating agents.

Let ūj(a∗) =
∑

i∈Tj

ui(a
∗)

nj
. As discussed, there may be systematic di�erences in the

extent to which the service provider is informed about di�erent groups, which implies
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that there are di�erences in the utility they receive from data markets. For example,

Theorem 3 directly implies the following result:

Corollary 2. Consider a representative group game where βsk(y) = βtk(y) for all k,

ns = nt and c(ys) > c(yt). Then, in any equilibrium, ūs(a∗) < ūt(a∗).

As shown above, the service provider is less informed about agents of group Ts than

they are about group Tt agents when the former have a higher average cost than the

latter. Therefore, Theorem 5 implies that agents in this group receive a lower payo�

than group Tt agents do.

9 Privacy and data inequality

This section analyses the e�ect of a particularly e�ective privacy policy, where agents'

data is decorrelated, such that the service provider only learns about them if they

choose to their data.

A privacy policy

Consider the case where a social planner designs a decorrelation scheme, where the

social planner commits to collecting the data on behalf of the service provider. The

planner then sends out a distorted signal of the form x̂ = Σ−1x.

This scheme allows for maximal privacy for those agents who do not participate in

the data market - as such it is a maximally e�ective form of privacy legislation, allowing

us to see the e�ect of weaker forms of such policies on utility and equality.

As Acemoglu et al (2022) point out, such a strategy can increase aggregate utility in

data markets where the service is harmful to consumers, as it stops the provider learning
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the characteristic of any non-participating agents. In our setting, the implementation

of such a scheme highlights the trade-o� between equity and the bene�ts associated

with data markets.

Privacy legislation and inequality

Let ud
i (ai) denote i's utility under the privacy policy.

Proposition 4. Suppose σi = σ for all i. The outcome under the privacy policy is such

that ud
i (ad,pd) = ud

j (ad,pd) for all i, j pairs.

Proposition 4 highlights the fact that data leakages are the source of inequality in

this model. Under the proposed privacy policy, one agent's participation decision does

not provide any information on the characteristics of other agents. Hence, agents who

participate receive the same utility as those who do not participate, and every agent

receives exactly the same payo�.

Proposition 5. For any outcome associated with any equilibrium without the privacy

policy, u(a∗, p∗), ui(a
∗,p∗) ≥ ud

i (ad,pd) for all i, with the dominance strict for i if

βij ̸= 0 for at least one j for whom a∗j = 1.

For any information structure where there are some data leakages, the proposed

data privacy policy reduces the utility of every agent. This follows because, as per

Theorem 5, an agent's payo� in equilibrium is increasing in the service provider's ability

to estimate their payo�. Under the privacy scheme, the service provider cannot learn

anything about i's characteristic unless i participates. As a result, agents lose out under

the policy, whether they sell their data or not.

The outcome with the proposed privacy policy is, at least weakly, worse for every

group, and so it is Pareto dominated by the status quo outcome. At the same time,

28



it is, in some sense, fairer than the status quo, in that every agent receives the same

payo�.

Proposition 5 also shows that data leakages are the source of the inequalities high-

lighted in this setting: without data leakages, agents of each group receive the same

payo� in equilibrium, though the service provider is still less informed about some

groups than others.

Privacy policies in this setting, then, increase the fairness and equity associated with

data markets but at the cost of the well-being of their participants.

10 Targeting inequality

Set-up

Suppose the social planner has a budget to buy data from agents directly. Let bi denote

the social planner's pricing o�er to i and that they have a budget of B > 0, such that∑
i bi ≤ B. Let b̂s =

∑
i∈Ts

bi and assume that B ≥ ci− τϕ(ai = 0,a∗) for some i where

a∗i = 0, so that the social planner can induce at least one extra agent to participate.

For simplicity, assume that the social planner buys data on a secondary data market

in the following sense. The initial market takes place in the way described above, with

the service provider collecting data and agents selling it without anticipating that the

social planner will intervene.

The social planner then chooses a pricing vector, b, taking as given the initial

participation vector, a∗. The social planner would then buy data on the secondary

market, with some agents who did not participate in the initial market doing so in

the secondary market. The social planner then hands over the data received on the

29



secondary market to the service provider, who �nally chooses d, using the data obtained

in both data markets.

The social planner's objective

Clearly, the optimal subsidy package depends upon the preferences of the social planner.

For example, if the social planner were aiming to minimise the total error made by the

service provider, the previous analysis tells us that they would choose b to minimise∑
i ϕi(a(b);a

∗, b).

A more interesting question arises when the social planner wishes to alleviate in-

equalities and/or increase the utility of particular groups. Again, the precise nature of

the optimal intervention in this case will depend upon the weighting the social planner

puts on equality versus aggregate utility. The analysis here will remain agnostic on the

solution to this trade-o�, instead showing how the framework can be used to identify

how to increase the utility of a speci�c group disadvantaged by the initial data market.

Speci�cally, I analyse the optimal approach to increasing the utility of some group,

Ts, i.e. the social planner solves the following minimisation problem

minb{
∑
i∈Ts

χi(a(b);a
∗)}

subject to the constraint
∑

i bi ≤ B. I call Ts the social planner's �target group�

Examining the optimal solution to this problem provides insight into the more gen-

eral trade-o�s a social planner faces when trying to optimise their subsidy policy, taking

into account the multiple inequalities which the data market generates.
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Inequalities and targeting

The analysis above can be used to consider the bene�t associated with an additional

member of a group Tt being induced to participate in the data market on the aggregate

utility of group Ts.

ûs
t(a) =

∑
i∈Tt

[ui(aj = 1,a−j)− ui(aj = 0,a−j)],

for some j ∈ Ts and aj = 0.

The matrix S(a) gives an insight into the level of substitution between i and j. For

a participation vector a, let:

ηij(a) = ϕi(aj = 0,a−j)
sji(aj = 0,a−j)

sjj(aj = 0,a−j)
.

I show in the Appendix that ηij(a) gives the reduction in the expected error the service

provider makes when estimating i's characteristic associated with aquiring j's data for

a participation vector, a−j .

Proposition 6. Consider a representative group game with participation vector a and

suppose i ∈ Ti, j ∈ Tj and k ∈ Tk. Then ûj
i (a) = τηij(a) and so if ηij(a) > ηik(a), then

ûj
i (a) > ûk

i (a).

When ηij(a) > ηkj(a), the reduction in the service provider's error in estimating

i's characteristic associated with receiving j's data is greater than when they receive

k's data when the participation vector is a. Hence, buying data from a group j agent

increases the average utility of group i agents more than buying data from a group k

agent. This observation provides insight into the bene�t of acquiring data from each

group if the social planner's aim is to increase the utility of a particular group of agents.
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De�ne:

ζs(b) := ci − τϕi(a(b);a
∗),

which is the investment required in order to elicit an additional group Ts agent to

participate when the investment vector is b and the equilibrium in the initial market is

a∗. The following statement holds:

Theorem 6. Let Ti be the social planner's target group. If for all b such that b1T = B :

ηij(b)

ηik(0)
> ⌊ζk(0)

ζj(b)
⌋, (4)

then for any b∗, there exists a group, Tl such that ūl(b∗)− ūk(b∗) > ūl(0)− ūk(0).

When equation (4) holds then, for any b∗, the average utility of group j increases

more than the average utility of group k due to the intervention of the social planner.

Note that this result includes the case where k = i: that is, if (4) holds, then even

when the social planner's only aim is to increase the utility of group Ti, the inequality

between group j and group i increases after the intervention.

Equation (4) can hold when, for example, c(yi) > c(yj): even when group i agents

are more informative of their peers than group j agents, the fact the latter agents can

be induced to participate at a cheaper price makes them a more valuable substitute

overall.

Theorem 6 highlights the fact that achieving fairness and increasing welfare can be in

con�ict, even when the social planner is biased towards the interests of disadvantaged

groups. In order to increase the payo� of such groups, it may be most e�ective to

incentivise more advantaged groups to participate in the data market, but doing so has

the e�ect of increasing inequality further.
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11 Extensions

In this section, I explore some extensions to the model, providing an insight into po-

tential further research.

Heterogenous service valuation

The preceding analysis was conducted on the basis that each agent had a common

valuation for the service provided. It may be that groups di�er on their valuation of

that service. The most plausible account of this would be where some groups value

privacy more than others. In order to make the payo�s between agents with di�erent

service valuations comparable, I re-de�ne utility of an agent i ∈ Ts as follows:

ui(ai = 1,a−i, pi) =


pi(a)− ci − (τs + τ)[(xi − di)

2 − ξ2i ] if ai = 1

−(τs + τ)[(xi − di)
2 − ξ2i ] if ai = 0

.

where τs < 0, and is assumed to be common knowledge. This formulation not only

results in some agents gaining more net utility from the service than others, but opens

up the possibility that some users receive negative utility from it. Let τ̂s = τs + τ .

Proposition 7. Suppose τ̂s < 0 < τ̂t, j ∈ Ts and i ∈ Tt. Then, for any equilibrium S,

uj(a
∗, p∗j) < ui(a

∗, p∗i ).

When agents are su�ciently privacy conscious such that the service provider learning

their type reduces their utility, they receive a lower payo� than a less privacy conscious

group of agents. As such, the existence of privacy conscious agents makes privacy

policies more appealing to a social planner: as privacy conscious groups are always less

well o� than their peers, the privacy policy is both better for aggregate utility and for
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equality concerns than it would be in the benchmark case analysed in the rest of the

paper.

A more complex case to consider is one where an agent's desire for the service

provider to learn their characteristic depends on the value of xi. For example, suppose xi

is a measure of skill and the service provider assigns tasks based on that skill level, with

more highly valued or paid tasks being optimally assigned to highly skilled individuals.

In this set-up, those with high values of xi would bene�t more from the service

provider learning their value of xi than those with lower values. Such a model would

involve rich dynamics not captured here, as an agent's decision to not sell their data

would be informative of their type in and of itself. As there are a number of real-life

cases (e.g. bene�ts provision and some employment markets) which this model would

capture, it would be fruitful to explore it in more detail in future work.

More general information structures

Throughout, I have assumed that agent characteristics are jointly normally distributed.

Much of the analysis above regarding data inequality generalises to more general infor-

mation structures, as long as these four properties hold:

1. Monotonicity: if a ≥ a
′
, then χi(a) ≥ χi(a

′
) for all i.

2. Group symmetry: if two agents i and j are members of the same group, Ts,

then χk(ai = 1, aj = 0,a−i,j) = χk(ai = 0, aj = 1,a−i,j) for all a−i,j and k.
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3. Group informativeness: if i, j ∈ Ts and any k ∈ Tt for t ̸= s, then for all a−j :

χi(ai = 0, aj = 0,a−j)− χi(ai = 0, aj = 1,a−j) >

χk(ak = 0, aj = 0,a−j)− χk(ak = 0, aj = 1,a−j).

4. Group submodularity: if i, j ∈ Ts and any k ∈ Tt for t ̸= s, then for all a−j :

γi(aj = 0,a−i,j)− γi(aj = 1,a−i,j) > γi(ak = 0,a−i,k)− γi(ak = 1,a−i,k).

Let ωi
s denote the number of active members of group Ts excluding i and a−s denote

the activity vector excluding agents in group Ts.

De�nition 4. Two groups, Ts and Tt, are informationally identical if for i ∈ Ts and

j ∈ Tt:

χ(ωi
s = ω, ai = 0,a−s)− χ(ωi

s = ω, ai = 1,a−s) =

χ(ωj
t = ω, aj = 0,a−t)− χ(ωj

t = ω, aj = 1,a−t).

for all a−t,a−s and ω.

Proposition 8. Suppose c(ys) > c(yt), ns = nt and that the groups Ts and Tt are

informationally identical. Then, for any equilibrium participation vector, a∗, χ̂t(a
∗) ≥

χ̂s(a
∗), with the inequality strict when ai,aj ̸= ns.

As such, it is possible to generalise the notion of a group such that similar results

regarding the level of information collected on such groups holds under more general

information structures, and as such the policy implications highlighted here remain
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pertinent in more general cases.

Competition in the data market

In many real-life markets, the service provider would not collect data directly, but in-

stead buy data from data intermediaries. Suppose that there are m ≥ 2 data intermedi-

aries, denoted by D. A data intermediary i makes take-it-or-leave-it o�ers represented

by the price vectors pi and qi, whose jth component, qj, represents the price charged

to the service provider. I also suppose that data is non-rivalrous, and as such can be

sold to multiple data intermediaries, incurring the same participation cost each time.

Let P denote a n × m matrix whose ijth entry is pij, with Q de�ned analogously

and aij = 1 denote the case where an agent j sells their data to a data intermediary i.

De�ne α as a n×m matrix whose ijth entry is aij. Finally, let aj be the m× 1 vector

whose ith entry is aij. A competitive equilibrium is de�ned as follows:

1. qi ∈ argmaxqi∈{0,1}n{
∑

j q
i
j(Q

−i;P ,α)} ∀i ∈ D;

2. pi ∈ argmaxpi∈{0,1}n{
∑

j q
i
j(Q

−i;P ,α)−
∑

j p
i
j(P

−i,α)} ∀i ∈ D;

3. aij ∈ argmaxa∈{0,1}muj(aj = a,α−j;P ) ∀j;

4. dj(a) ∈ argmaxdj∈RE[(xj − dj)
2|a] ∀j.

I state the following result regarding any competitive equilibrium:

Proposition 9. In any competitive equilibrium with prices matrices P ∗and Q∗ and

participation matrix α∗, the following conditions are satis�ed:

1) the service provider pays intermediary i, qij(α
∗) = θj(α

∗) for j's data;

2) if aj ̸= 0, the price j receives for their data, pj(α
∗) = cj − τϕj(aj = 0,α−j).

3) agent j participates i� θj(α
−j) ≥ pi(α

∗).
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Proposition 9 highlights the point that competition in the data market does nothing

to change the payo�s the agents receive for their data, and so does not change the

fundamental di�erences in the allocation of payo�s present in our analysis.

The intuition for the result in Proposition 9 is consistent with Ichihashi (2021): as

data is non-rivalrous, if two or more intermediaries set a price pj(α
∗) ≥ cj − τϕj(a

∗
j =

0,α−j) for j's data, i will sell to both �rms. As j's data is homogenous, when more

one data intermediary holds it, the resale value of that data is bid down to zero in

equilibrium. Hence, only one data intermediary o�ers to buy any given agent's data

in equilibrium, and so they receive the same price for their data as they do in the

non-competitive equilibrium analyse in the main text.

12 Conclusion

As the data organisations hold about us becomes increasingly informative, the greater

the extent to which those organisations can tailor their o�erings and services to indi-

viduals and groups. This level of personalisation opens the door to a particular form of

data inequality - between individuals who data collectors are well informed about, and

individuals whose characteristics are relatively unknown.

The literature on such data inequalities have largely treated the dataset collected

as a given, with the focus on how to deal with biases present within that data. Here,

I analyse how incentives of participants in data markets determine those biases in the

�rst place. To do so, this paper uses tools from the networks literature to characterise

equilibrium prices, participation rates and the extent to which the data collector is

informed about di�erent market participants, highlighting the di�erences in the value

of the data of di�erent individuals.
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The results here show how inequalities driven by data acquisition do not just relate

to how data is used once it is collected: data markets themselves can contribute to data

inequalities. Di�erences in the informativeness of a group's information, the size of the

group and systematic di�erences in participation costs all contribute to these inequal-

ities. E�ectively alleviating these di�erences while maintaining the positive aspects of

data markets of the type analysed here requires an understanding of the information

structure.

As discussed in the extensions, there are a number of fruitful avenues for further

research. Of the most promising, in my view, is the role data markets and the external-

ities they generate impact inequality in settings where the service provider's action is

positive for agents with some characteristics and negative for others, with applications

including criminal justice and hiring. Much of the literature on algorithmic fairness

examines these cases, and the framework outlined here will generate new insights re-

garding these markets.
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Appendix

Proof of Lemmas 2 and 3

To prove Lemma 2, it is useful to utilise the result in Lemma 3. Hence, I prove the

latter �rst. Recall that:

x̂(a) = M̂(a)[µ̂(a)+ ε̂(a) +D(a)x̃(a)].

The vectors D(a)x̃(a) and µ̂(a) are �xed, and thus:
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E[
∑
i

(xi − E[xi|a])2] = [M̂(a)ε̂(a)]T [M̂(a)ε̂(a)].

It then follows that:

[M̂(a)ε̂(a)]T [M̂(a)ε̂(a)] = ε̂(a)TM̂2(a)ε̂(a),

and so the result holds in Lemma 3 holds. equity

Recall that S(a) =
∑∞

k=0 β̂
2k
(a) and σ̂2

i (aj = 0,a−j) = σ̂2
i (aj = 1,a−j) ∀i ̸= j. We

know that:

γi(a−i) =

|A0|∑
k∈A0

[ϕk(a−i, ai = 0)− ϕk(a−i, ai = 1)].

The above expression for γi(a−i) implies that:

γi(a−i) =

|A0|∑
k∈A0

|A0|∑
j∈A0

[sjk(ai = 0, a−i)− sjk(ai = 1, a−i)σ̂
2
k(ai = 0,a−i)].

To prove Lemma 2, I examine the change in the reduction in the sum of paths involved

with the service provider learning i's characteristic when j is removed. Note that (as

per Ballester et al, 2006), the following identity holds:

sjk(ai = 0, a−i)− sjk(ai = 1, a−i) =
sji(ai = 0, a−i)sik(ai = 0, a−i)

sii(ai = 0, a−i)
, (5)

and hence:

sik(ai = 0, aj = 0, a−i,j)− sik(ai = 1, aj = 0, a−i,j) ≥

sik(ai = 0, aj = 1, a−i,j)− sik(ai = 1, aj = 1, a−i,j).

This inequality directly implies the result in Lemma 2.
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Proof of Proposition 1

For any given a, ∃di ∈ argmaxdi∈RE[(xi−di)
2|a] ∀i. To establish an equilibrium exists,

it is then su�cient to show that the following participation and price vectors constitute

an equilibrium:

a∗ = argmaxa∈{0,1}n

n∑
i=1

[χi(a) + τχi(ai = 0,a−i)− ci];

and p∗(a∗) whose ith component is p∗i (a
∗) = ci − τχi(ai = 0,a∗

−i) if a∗i = 1 and 0

otherwise. First, note that no agent has a pro�table deviation. If a∗i = 1, then deviating

and not participating gives a payo� equal to −τχi(ai = 0,a∗
−i) = ui(ai = 1,a−i,p

∗).

If a∗i = 0, then deviating would yield a payo� of −ci, which must be strictly less than

−τχi(a
∗) by the de�nition of a∗.

Now, we check that p∗ ∈ argmaxp∈{0,1}n{E[
∑

i(xi − di)
2|a,p] −

∑
i pi(a)}. To see

this, note that for some participation pro�le a ̸= a∗ to be part of some equilibrium,

S = {d, a, p}, it must be the case that if ai = 1, pi(a) ≥ ci−τχi(a−i, ai = 0), otherwise

i would deviate. Thus:

πS(a,p) ≤
n∑

i=1

[χi(a)− ci + τχi(a−i, ai = 0)] ≤ πS(a
∗,p∗).

If some S = {d, a, p} constitutes an equilibrium, it must be the case that πS(a,p) =

πS(a
∗,p∗), otherwise, there is a pro�table deviation for the service provider, and there-

fore S would not be an equilibrium. Therefore, the payo� to the service provider is the

same in each equilibrium.
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Proof of Theorem 1

Note that vi(a
∗) = γi(a−i). By equation (1):

γi(a−i) =

|A0|∑
j∈A0

[ϕj(a−i, ai = 0)− ϕj(a−i, ai = 1)],

and the right-hand side of this expression equals θi(a
∗
−i) by de�nition.

Now, consider a candidate equilibrium price p∗i (a
∗) = ci − τχi(ai = 0,a∗

−i). For any

agent for whom ai = 1 under some price vector, p, and some participation vector, a, it

must be the case that:

pi − ci ≥ −τχi(ai = 0,a−i)

which implies that pi ≥ −τχi(ai = 0,a−i) + ci = p∗i (a
∗). It follows that for any equilib-

rium participation vector, a∗, in which a∗i = 1, pi(a
∗) = p∗i (a

∗) : otherwise, the service

provider can increase its pro�ts by deviating to some lower price and still induce i to

participate.

The identity in equation (1) establishes χi(ai = 0,a−i) = ϕi(ai = 0,a−i), and so the

identity in the second statement in the Theorem holds.

The third statement follows from the fact that if θi(a
∗
−i) < p∗i (a

∗), then vi(a
∗) =

θi(a
∗
−i) < p∗i (a

∗), and so it is optimal for the service provider to deviate and set pi(a
∗) =

0 < p∗i (a
∗), with the �nal inequality holding because θi(a

∗
−i) > 0.

Proof of Corollary 1

By Theorem 1, p∗i (a
∗) = ci− τχi(ai = 0,a∗

−i) in any equilibrium. Suppose that c < τσ2
i

∀i then in the only equilibrium it must be that every agent participates, and receives a
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price p∗i (a
∗) = c− τσ2

i . To see that such a price vector uniquely induces a∗ = 1 when

c < τσ2
i for all i, consider another participation vector a ̸= 1. Then, as c < τσ2

i and

σ2
i ≤ χi(ai = 0,a−i), any agent for whom ai = 0 would deviate and receive a higher

payo�.

Furthermore, p∗i (a
∗) = c − τσ2

i is the lowest possible price to ensure every agent

participates. Hence the proposed equilibrium in which a∗ = 1 and p∗i (a
∗) = c − τσ2

i

for all i is indeed a unique equilibrium where v∗i (a
∗) = σ2

i . This equilibrium pertains

when c < τσ2
i for all i, and hence the �rst statement in the Corollary holds.

Now, suppose that γi(0)−c−τχi(ai = 0,0) ≤ 0 for all i. For an agent i to be induced

to participate pi ≥ c− τχi(ai = 0,0). Furthermore, χj(ai = 0,0) ≥ χj(ai = 1,0) with

the inequality strict when θj(ai = 0,0) > θj(ai = 1,0). It follows that, if a
′
i = 1, then

p
′
i(a

′
) = θi(0) otherwise, i would deviate, preferring not to participate.

Recall that these conditions hold when γi(0)− c− τχi(ai = 0,0) ≤ 0 for all i, and

so exists a c̄ such that if c > c̄ such that any equilibrium is as described.

Proof of Proposition 2

Note that ui(ai = 1, aj,a−i,j;p) = pi(a)− ci for aj = 0 and:

u(ai = 0, aj,a−i,j;p) = −τχi(aj,a−i,j)

As shown in the proof of Lemma 2, χi(aj = 1,a−i,j) ≤ χi(aj = 0,a−i,j). As i's

utility when ai = 1 is independent of χi(aj,a−i,j), it follows u(ai = 1, aj,a−i,j)−u(ai =

0, aj,a−i,j) is weakly decreasing in aj, and is strictly decreasing when χi(aj = 1,a−i,j) <

χi(aj = 0,a−i,j).
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Proof of Theorem 2

First, consider the information structure Σ. Suppose that τ̄ is such that there is a

unique equilibrium where a∗ = 1 and p∗i (a
∗) = ci − τ̄σ2

i for all i, and furthermore that

ci− τ̄σ2
i = σ2

i for at least one i. This �nal equality guarantees that the service provider

is indi�erent between buying and not buying i's data, and so if σ2
i were to increase,

then they deviate and set p∗i (a
∗) = 0 and induce i not to participate. In this case,

χ(a∗(Σ), τ̄) = 0.

I partition the covariance matrix Σ such that:

Σ =
ξii Σij

Σji Σjj

,

where xj is the (n−1)×1 of the characteristics of non-i agents. Note that, by standard

results, xi|xj is distributed normally with mean µi + ΣijΣ
−1
jj (xj − µj) and variance

ξii − ΣijΣ
−1
jj Σji. If ξ

′
ij > ξij and ξ

′
ii = ξii for all i, j, this then implies that σ

′
j < σj for

all j.

This �nal inequality implies that ci
1+τ̄

> (σ
′
i)

2, which implies that the service provider

is unwilling to induce ai = 1 under the information structure Σ
′
. It follows that for

τ = τ̄ , the inequality in the Theorem holds strictly, with χ(a(Σ
′
), τ̄) > 0 for any a(Σ

′
)

which is an equilibrium under the information structure Σ
′
.

As τ increases, the inequality ci− τσ2
i ≤ σ2

i continues to hold, and so χ(a∗(Σ), τ) =

0 for all τ > τ̄ . Hence, χ(a∗(Σ), τ)(≥) χ(a∗(Σ
′
), τ) for all τ > τ̄ and any pair of

equilibrium participation vectors, with the inequality strict if a∗(Σ
′
) ̸= 1.
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Proof of Theorem 3

Suppose that, for some equilibrium with participation vector a∗ and price vector p∗,

χ̂s(a
∗) ≥ χ̂t(a

∗). Given that βks(y) ≤ βkt(y) for all k ̸= s, t, ns = nt and σi = σ

for all i, this implies that
∑

i∈Ts
a∗i ≥

∑
i∈Tt

a∗i - that is, a greater proportion of type

ts are active in the proposed equilibrium than type s agents. Note also that, by the

assumption, a∗, a∗i = 0 for some i ∈ Tk and all k.

The following Lemma holds:

Lemma 4. When
∑

i∈Ts
a∗i ≥

∑
i∈Tt

a∗i , βsk(y) ≤ βtk(y) for all k ̸= s, t, ns = nt and

c(ys) > c(yt), the intercentrality of some agent, i ∈ Tt, θi(a
∗) ≥ θj(a

∗), where j ∈ Ts.

Proof. By de�nition:

θi(a−i) :=

|A0|∑
j∈A0

[ϕj(ai = 0,a−i)− ϕj(ai = 1,a−i)]

we know that ϕj(ai = 0,a−i) is the jth entry of the matrix S(a)σ2, and hence ϕj(ai =

0,a−i) =
∑

j sji(ai = 0,a−i)σ
2. As S(a) =

∑∞
k=1 β

k(a), then:

θi(a−i) = ϕi(ai = 0,a−i) +
∞∑
z=0

(
∑
j ̸=i

∑
k ̸=i

g
[z]
j(i)k), (6)

where g
[z]
j(i)k is the value of the (weighted) paths of length z that begin at j and end at

k. As βks(y) ≤ βkt(y) for all k ̸= s, t and βss = βtt, it follows that when
∑

i∈Ts
a∗i =∑

i∈Tt
a∗i , it must be that for i ∈ Tt and j ∈ Ts,

∑∞
z=0 g

[z]
r(i)k ≥

∑∞
z=0 g

[z]
r(j)k for all

r, k /∈ Ts, Tt;

∞∑
z=0

[g
[z]
r(i)k − g

[z]
r(j)k] ≥

∞∑
z=0

[g
[z]

r(j)k′
− g

[z]

r(i)k′
]
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for all k ∈ Tt and k
′ ∈ Ts and:

∞∑
z=0

[g
[z]
r(i)k − g

[z]
r(j)k] ≥

∞∑
z=0

[g
[z]

r′ (j)k
− g

[z]

r′ (i)k
]

for all r ∈ Tt and r
′ ∈ Ts, with each of these inequalities holding with equality i�

βsk(y) = βtk(y) for all k ̸= s, t. When χ̂s(a
∗) ≥ χ̂t(a

∗) then ϕi(ai = 0,a−i) ≥ ϕj(aj =

0,a−j) for i ∈ Tt and j ∈ Ts.

Notice that precisely the same weak inequalities all hold strictly when
∑

i∈Ts
a∗i >∑

i∈Tt
a∗i . Hence, the Lemma holds.

Recall that p∗i = ci−τχi(a
∗) in equilibrium. It then follows that the service provider

has an incentive to deviate, such that they set pj = 0 for some j ∈ Ts for whom

a∗j = 1 and set pi = ci − τχi(a
∗). Noting that χi(a

∗) < χj(a
∗) as χ̂s(a

∗) ≥ χ̂t(a
∗)

and c(ys) > c(yt) it follows that pi < p∗j , and so the proposed deviation is pro�table,

yielding a contradiction.

Proof of Theorem 4

Suppose that, for some equilibrium with participation vector a∗ and price vector p∗,

χ̂s(a
∗) ≥ χ̂t(a

∗). As ns < nt, χ̂s(a
∗) ≥ χ̂t(a

∗) implies that
∑

i∈Ts

a∗i
ns

>
∑

i∈Tt

a∗i
nt
.

Lemma 5. When
∑

i∈Ts

a∗i
ns

≥
∑

i∈Tt

a∗i
nt
, βsk(y) ≤ βtk(y) for all k ̸= s, t, ns < nt and

c(ys) = c(yt), the intercentrality of some agent, i ∈ Tt, θi(a
∗) > θj(a

∗), where j ∈ Ts.

Proof. A formula for the intercentrality of an agent i is given in equation (6). Suppose

that
∑

i∈Ts

a∗i
ns

=
∑

i∈Tt

a∗i
nt

(which, as per the above, is not true in this case) and βsk(y) =

βtk(y) for all k ̸= s, t. Clearly, as ns < nt and βtt(y) > βts(y) for s ̸= t, the following

inequalities hold for i ∈ Tt and j ∈ Ts:
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∞∑
z=0

g
[z]
r(i)k −

∞∑
z=0

g
[z]
r(j)k > 0

for all r, k /∈ Ts, Tt;

∞∑
z=0

[g
[z]
r(i)k − g

[z]
r(j)k]−

∞∑
z=0

[g
[z]

r(j)k′
− g

[z]

r(i)k′
] > 0

for all k ∈ Tt and k
′ ∈ Ts and:

∞∑
z=0

[g
[z]
r(i)k − g

[z]
r(j)k]−

∞∑
z=0

[g
[z]

r′ (j)k
− g

[z]

r′ (i)k
] > 0

for all r ∈ Tt and r
′ ∈ Ts. These inequalities continue to hold if

∑
i∈Ts

a∗i
ns

>
∑

i∈Tt

a∗i
nt

and/or βks(y) ≤ βkt(y) for all k ̸= s, t: the left-hand side of each of the above inequal-

ities are increasing in
∑

i∈Ts

a∗i
ns

−
∑

i∈Tt

a∗i
nt

and βkt(y)− βks(y) for all k ̸= s, t.

When χ̂s(a
∗) ≥ χ̂t(a

∗), it must be that when ns < nt, ϕi(ai = 0,a−i) ≥ ϕj(aj = 0,a−j)

for i ∈ Tt and j ∈ Ts, and hence by equation (6), θi(a
∗) > θj(a

∗).

Recall that ci = cj and ϕi(ai = 0,a−i) ≥ ϕj(aj = 0,a−j) for i ∈ Tt and j ∈ Ts, and

therefore p∗i = ci − τχi(a
∗).

It then follows that the service provider has an incentive to deviate from the proposed

equilibrium with participation vector a∗, such that they set pj = 0 for some j ∈ Ts for

whom a∗j = 1 and set pi = ci−τχi(a
∗). Noting that χi(a

∗) < χj(a
∗) as χ̂s(a

∗) ≥ χ̂t(a
∗)

and c(ys) > c(yt) it follows that pi < p∗j , and so the proposed deviation is pro�table,

yielding a contradiction.
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Proof of Proposition 3

Suppose a∗i = 0 for some equilibrium vector a∗. The total gross increase in payo�

associated with the payo� vector a
′
where a

′
i = 1 and a

′
j = a∗j where j ̸= i is equal to

(1 + τ)θi(a
∗) by Theorem 1. Hence, if ci < (1 + τ)θi(a

∗),then:

n∑
j=1

uj(a
′
) + πS(a

′
) ≥

n∑
j=1

uj(a
∗) + πS(a

∗).

However, as shown by Theorem 1, the maximum price the service provider is willing to

pay i in equilibrium is θi(a
∗). Hence, if ci − τϕi(ai = 0,a∗

−i) > θi(a
∗), then i cannot be

induced to participate in equilibrium. Rearranging, we get the �rst inequality in the

Proposition, and hence S is ine�cient.

Proof of Theorem 5

The �rst statement in Theorem 5 follows from Theorem 1: as p∗i (a
∗) = ci − τϕi(a−i) if

a∗i = 1, then ui(ai = 0,a∗) = −τϕi(ai = 0,a∗
−i) if a

∗
i = 1. Furthermore, if a∗i = 0 then

this equality holds immediately.

For the second statement, note that χj(ai = 0,a∗
−i) ≥ χj(ai = 1,a∗

−i), with the

inequality strict if βij > 0. By de�nition, if i, j ∈ Ts and a∗j = 0 then χi(ai = 0,a∗
−i) =

χj(ai = 0,a∗
−i). Hence:

ui(a
∗) = −τχi(a

∗) ≤ −τχj(a
∗) = uj(a

∗)

with the inequality strict if βij > 0.
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Proof of Corollary 2

First note that, by Theorem 1, βsk(y) = βtk(y) for all k, ns = nt, c(ys) > c(yt) implies

that
∑

i∈Tt
a∗i >

∑
i∈Ts

a∗i , and speci�cally,
∑

i∈Tt
a∗i −

∑
i∈Ts

a∗i ≥ 1. Suppose a∗i = 1

and i ∈ Tt. It then follows that χi(ai = 0,a∗
−i) ≥ χj(a

∗
j = 0,a∗

−j) for any j ∈ Ts

with a∗j = 0. Given the condition on equilibrium prices in Theorem 1, it follows that

ui(a
∗) ≥ uj(a

∗) > uk(a
∗) for some k ∈ Ts where a∗k = 0. The last inequality follows

from Theorem 5.

Now consider some l ∈ Tt and a∗i = 0. By Theorem 5, ul(a
∗) > ui(a

∗). Hence, for

any pair of agents (i, j), with i ∈ Tt and j ∈ Ts pairs, it follows that ui(a
∗) ≥ uj(a

∗),

with the inequality strict for some pairs. The Corollary follows immediately from this

observation.

Proof of Proposition 4

First, I state the following Lemma:

Lemma 6. Under the privacy policy, for all a:

χd
i (a) =


χi(0) if ai = 0

0 if ai = 1

Proof. First note that E[x̂xT ] = E[xxT ]Σ−1 = I. Thus, there is no correlation between

xi and xj for all j ̸= i. When ai = 1, the service provider learns xi with complete

accuracy, and thus χ(a) = 0.

The service provider's error when estimating xi, ϕi(ai = 0,a−i) ≥ ϕi(ai = 0,0) with

the inequality strict if βij ̸= 0 for some a∗j = 1. Lemma 5 implies that ϕd
i (ai = 0,a−i) =
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ϕd
i (ai = 0,0)

By Theorem 5, ui(a
∗) = −τϕi(ai = 0,a−i). The preceding analysis implies that for

any equilibrium participation vector a∗, −τϕi(ai = 0,a∗
−i) ≥ −τϕd

i (ai = 0,a) for any

possible a, including an equilibrium participation vector under the privacy policy, ad.

Proof of Proposition 5

Note that by Lemma 5 and Theorem 5, ud
i (ad) = −τχi(0) for all i any equilibrium

under the privacy policy. Hence, if σi = σ for all i, ud
i (ad) = u for all i.

When β = 0, if ai = 0 then χi(ai = 0,a−i) = χi(0) for all a−i. In this case,

ui(a
∗,p∗) = u for any equilibrium. If βij > 0 for some j ∈ A1, then ui(a

∗,p∗) > u

for any equilibrium participation and price vectors, a∗,p∗, whatever the value of a∗i .

Hence, the statement in the Proposition holds.

Proof of Proposition 6

When σ2
i = σ2 for all i, note that:

ϕi(aj = 0,a∗
−j)− ϕi(aj = 1,a∗

−j) =
∑
k

[sik(aj = 0,a∗
−j)− sik(aj = 1,a∗

−j)]σ
2.

By equation (5), then, the following equalities hold:

ϕi(aj = 0,a∗
−j)− ϕi(aj = 1,a∗

−j) = σ2

∑
t sji(aj = 0,a∗

−j)sit(aj = 0,a∗
−j)

sjj(aj = 0,a∗
−j)

=

σ2ϕi(aj = 0,a∗
−j)

sji(aj = 0,a∗
−j)

sjj(aj = 0,a∗
−j)

.
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By Theorem 5, ui(a
∗) = −τϕi(ai = 0,a∗

−i), so Proposition 6 follows from the above

equalities.

Proof of Theorem 6

Note �rst that by Lemma 2 (and, as is clear from equation (5) above), ηij(b) is weakly

decreasing in b, and so ηik(0) ≥ ηik(b) for all b ≥ 0. Hence, if for all b such that b1T =

B, ηij(b) > ⌊ ζk(0)
ζj(b)

⌋ηik(0) then for any b
′
such that b

′
1T ≤ B, ηij(b

′
) > ⌊ ζk(b

′
)

ζj(b
′
)
⌋ηik(b

′
).

It follows that for any b where b̂k > 0, there is always a pro�table deviation for the

social planner to some b
′
where b̂k > b̂

′

k and b̂
′
j > b̂j. Hence, for any optimal b∗, it must

be that b̂k = 0.

As B ≥ ci − τϕ(ai = 0,a∗), we know that b̂l > 0 for some group Tl, though, note

that Tl may or may not be the group Tj. The inequality in the Theorem therefore holds.

Proof of Proposition 7

Lemma 7. For any equilibrium, a∗, for all i ∈ Ts, ui(a
∗) = τ̂s[ξ

2
i − ϕi(ai = 0,a∗

−i)].

Proof. For any equilibrium, the service provider optimally sets a price, p∗i = ci −

τ̂iϕi(ai = 0,a−i), for any agent who participates. If they did not, then there would

always exist a pro�table deviation such that the service provider could set a lower

price p
′
i < p∗i , which would still induce i to participate given a−i and would yield a

higher pro�t. As an agent, i ∈ Ts, who does not participate by de�nition receives

τ̂s[ξ
2
i − ϕi(ai = 0,a∗

−i)] the lemma holds.

Now, consider some participation vector, a. Given Lemma 7, τ̂i < 0 and τ̂j > 0,

it follows that ui(a) is minimised at a−i = 0 and uj(a) is maximised at a−j = 0.
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Note that ui(ai = 0,a−i = 0) = uj(aj = 0,a−j = 0), but, as ϕi(ai = 0,a−i) is weakly

increasing in a−i by Lemma 2, the statement in the Proposition holds.

Proof of Proposition 8

Suppose that, for some equilibrium with participation vector a∗ and price vector p∗,

χ̂s(a
∗) ≥ χ̂t(a

∗). In this case, it must be that
∑

i∈Ts
a∗i ≥

∑
i∈Tt

a∗i . To see this,

recall that as Ts and Tt are informationally identical then if
∑

i∈Ts
a∗i =

∑
i∈Tt

a∗i ,

χ̂s(a
∗) = χ̂t(a

∗). Furthermore, this equality and group informativeness jointly imply

that χ̂s(a
∗) > χ̂t(a

∗) then
∑

i∈Ts
a∗i >

∑
i∈Tt

a∗i : as χ̂s(a
∗) = χ̂t(a

∗) for all a−t,s, it

follows that if
∑

i∈Ts
a∗i <

∑
i∈Tt

a∗i , then χ̂s(a
∗) < χ̂t(a

∗).

Note that for any equilibrium price vector p∗, it must be the case that p∗i = ci −

τχi(ai = 0,a−i), for an analogous reason that statement 1 in Theorem 1 holds: if

p∗i < ci−τχi(ai = 0,a−i) when a∗i = 1 then i would prefer to deviate and not participate

and if p∗i > ci − τχi(ai = 0,a−i), then the service provider can still induce i to deviate

with some price p
′
i, where ci − τχi(ai = 0,a−i) ≤ p

′
i < p∗i .

Now, consider an alternative equilibrium activity-price pair a
′
, p

′
, which are iden-

tical to a∗and p∗ except there exist a pair i ∈ Ts and j ∈ Tt such that a∗i = a
′
j = 1 and

a
′
i = a∗j = 0 with prices such that i and j are just indi�erent between participating and

not participating in the potential equilibrium they participate, and 0 otherwise. 2

As c(ys) > c(yt) and χi(ai = 0,a−i) > χj(aj = 0,a−j), it follows that
∑

i∈A1
p
′
i <∑

i∈A1
p∗i . If

∑
i∈Ts

a∗i =
∑

i∈Tt
a∗i , then by the informationally identical property, it

must be that χ(a∗) = χj(a
′
), and so a∗, p∗ cannot be part of an equilibrium in this

case.

2If there exists no j ∈ Tt such that a∗j = 0, then it must be that every Ts agent participates if
χ̂s(a

∗) ≤ χ̂t(a
∗), and so the statement in the Proposition automatically holds.
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Group submodularity implies that, starting at
∑

i∈Ts
ai =

∑
i∈Tt

ai and for any a−s,t,

an increase in the number of active Ts group agents reduces γi(a−i) more than γj(a−j)

for i ∈ Ts and j ∈ Tt, which then implies when
∑

i∈Ts
a∗i >

∑
i∈Tt

a∗i , χ(a
∗) < χj(a

′
),

and so, again, a∗, p∗ cannot be part of an equilibrium.

Proof of Proposition 9

Result 2 follows from the fact that for any potential equilibrium in which aij = 1 and

pij > cj − τϕj(aj = 0,a−j), intermediary i always has an incentive to deviate and set

some price cj−τϕj(aj = 0,a−j) ≤ p
′
< pij, receiving a higher pro�t while still inducing

ai to participate.

To establish result 1 in the Proposition, it is necessary to establish the following

Lemma:

Lemma 8. For any equilibrium participation matrix, a, if aij = 1, then akj = 0 for all

k ̸= j.

Proof. Suppose instead that for some equilibrium participation matrix, a, if aij = akj =

1, for some k ̸= j. By the same argument as the proof of Theorem 1, psj ≥ cj−τϕj(aj =

0,a−j) for any s where asj . Suppose, without loss of generality, p
i
j = pkj = cj− τϕj(aj =

0,a−j) for two intermediaries, i and k, with psj = 0 for all other intermediaries.

Consider the equilibrium prices for j's data when it is sold to the service provider,

qij and qkj . The products the two intermediaries are selling are homogeneous, and thus

by standard arguments the only set of equilibrium price for j's data is qij =qkj = 0.

It follows that, in equilibrium, if aij = 1 for some i, then an intermediary k ̸= i sets

a price pkj < cj − τϕj(aj = 0,a−j) and so akj = 0.

Given Lemma 8, it follows that only a single intermediary (at most) holds data on
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a given agent j. As established in Theorem 1, vj(α
∗) = θi(α

−j). Hence, if in some

potential equilibrium an intermediary i sets qij < θj(α
−j),there is always a deviation in

which i sets a price q
′
qij < q

′ ≤ θj(α
−j) which yields a higher pro�t for i. Result 3 in

the Proposition follows directly from this analysis.
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