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1 Introduction

Screening problems are extremely common in economics, appearing in a wide variety of seem-
ingly unrelated settings: nonlinear pricing (e.g., Mussa and Rosen (1978) or Armstrong (1996)),
optimal taxation (e.g., Mirrlees (1971) or Saez (2001)), public procurement (e.g., Laffont and
Tirole (1994)), and regulation of monopolies (e.g., Baron and Myerson (1982)). Because all of
these problems can ultimately be studied within a single unifying framework of optimal screen-
ing, understanding properties of general screening problems has been a priority of the theoretical
economics literature over the past 50 years.

The majority of work in the screening literature has considered the unidimensional case:
agents differ on one dimension and have a single choice variable. The key result from this litera-
ture is that if preferences satisfy the single crossing property, then local incentive compatibility
is necessary and sufficient for global incentive compatibility (e.g., Mirrlees (1971)). Moreover,
second order conditions are typically not binding for most type spaces, which rules out bunch-
ing and allows the use of first order optimization methods to solve for the optimal mechanism.
The goal of this paper is to explore the extent to which these results carry over to a general
multidimensional setting in which a principal screens agents who differ on many dimensions and
have many choice variables.

This paper contributes to the screening literature in two ways. First and foremost, we derive
a number of results characterizing incentive compatibility in general multidimensional screening
problems assuming preferences satisfy a “generalized single crossing property”. First, Theorem
1 shows that incentive compatibility necessitates first order conditions to hold almost every-
where, second order conditions to hold whenever the allocation is sufficiently smooth (precisely,
when the transfer schedule is differentiable and the mapping from types to actions is locally
diffeomorphic), and the mapping from types to actions to be globally injective whenever it is
sufficiently smooth. Second, Theorem 2 shows that if we restrict ourselves to sufficiently smooth
allocations, we can derive a general necessary and sufficient condition for incentive compatibility
in terms of individual first order conditions, a global injectivity condition, and a condition re-
quiring all individuals prefer their assigned bundle to bundles chosen by boundary individuals.
Moreover, we discuss how this result extends to non-smooth allocations via a limiting argu-
ment. Taken together, our results allow us to determine whether many allocations are incentive
compatible in general multidimensional settings.

The second contribution of this paper is to devise a method that applies our incentive
compatibility results to numerically solve multidimensional screening problems. The core idea
is to maximize the objective function for a general multidimensional screening problem over
the set of allocations satisfying our necessary conditions: first order conditions, second order
conditions, and a constraint that the allocation is sufficiently smooth (i.e., locally diffeomorphic).
We show that this approach boils down to an optimization problem with linear and non-linear
equality and inequality constraints, which appears to be computationally tractable. Once we
have a proposed solution from this procedure, we can check whether it satisfies our sufficient
conditions for incentive compatibility; if so, then we have found the optimal schedule within
the class of smooth allocations. Of course, one may question the endogenous assumption that
the optimal allocation is smooth. While this is typically innocuous in unidimensional problems
(as second order conditions are not binding), as illustrated in Rochet and Chone (1998) for
the multiproduct monopolist setting, second order conditions often do bind in multidimensional
settings, which generates bunching. Fortunately, our numerical method based on Theorems
1 and 2 is capable of handling situations in which the optimal allocation features bunching
so long as the optimal (non-smooth) allocation can be approximated to arbitrary precision by
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smooth allocations. This turns out to be quite important as we illustrate solutions that feature
bunching for a number of toy examples as well as a more realistic, calibrated exercise exploring
optimal taxation of couples using data from the Current Population Survey.

Within the literature on multidimensional screening, this paper is most closely related to
three papers: Rochet (1987), McAfee and McMillan (1988), and Carlier (2001), all of which char-
acterize incentive compatible allocations in various multidimensional settings. Rochet (1987)
proves that incentive compatibility is equivalent to an envelope condition and a convexity condi-
tion on utility provided that utility is separable in the transfer and all choice variables, linear in
the transfer, and linear in type. The key contribution that we make relative to Rochet (1987) is
that our results apply to a much wider class of utility functions: we only require that the utility
function satisfy our generalized single crossing property, which does not require utility to be
separable, linear in the transfer, or linear in type. McAfee and McMillan (1988) show that for
the case of smooth allocations (i.e., assuming away bunching), incentive compatibility is equiva-
lent to first and second order conditions under their own “generalized single crossing property”,
which differs from our generalized single crossing property. In particular, the generalized single
crossing property discussed in McAfee and McMillan (1988) is much more stringent than our
generalized single crossing property: it is difficult to identify any realistic utility function which
satisfies the generalized single crossing property of McAfee and McMillan (1988) other than
utility functions which are linear in type. Our results contribute relative to McAfee and McMil-
lan (1988) primarily because our generalized single crossing condition holds for a much wider
class of utility functions and secondarily because our results extend to allocations that feature
bunching. Carlier (2001) generalizes Rochet (1987) by characterizing incentive compatibility
when utility is not necessarily linear in type, but is separable and quasi-linear in consumption,
via the concept of h-convexity. In contrast, our results do not require separability of the utility
function, but do require a generalized single crossing condition. Secondly, our results are ad-
ditive above and beyond Carlier (2001) because h-convexity constraints are inherently difficult
to work with numerically because they are expressed in terms of global (rather than local)
properties of the allocation. In contrast, our necessary conditions can be verified using local
properties of the allocation, which enables easier use for numerically solving multidimensional
screening problems.

The second portion of this paper develops a numerical methodology to solve multidimensional
screening problems and then applies this methodology to multidimensional optimal taxation.
While the core contribution here is developing a general numerical method to solve multidimen-
sional screening problems, this paper is also related to a growing literature on taxation with
multidimensional heterogeneity, including Mirrlees (1976), Mirrlees (1986), Kleven, Kreiner and
Saez (2009), Chone and Laroque (2010), Jacquet and Lehmann (2015), Scheuer and Werning
(2016), Jacquet and Lehmann (2020), Bergstrom and Dodds (2021), Spiritus et al. (2022),
Boerma, Tsyvinski and Zimin (2022), and Krasikov and Golosov (2022). Many of these pa-
pers deal with settings in which agents have multiple dimensions of heterogeneity, but only one
choice variable, which is a much simpler class of problems. On the other hand, Mirrlees (1976),
Mirrlees (1986), Kleven, Kreiner and Saez (2009), Spiritus et al. (2022), Boerma, Tsyvinski and
Zimin (2022), and Krasikov and Golosov (2022) all consider settings in which agents have mul-
tidimensional types and multidimensional choice sets. With the exception of Boerma, Tsyvinski
and Zimin (2022), all of these papers assume that bunching does not occur, which allows them
to use first order conditions to solve for the optimal schedule. Boerma, Tsyvinski and Zimin
(2022) uses the utility function from Rochet (1987) to explore a model with multidimensional
skill types and participation constraints, finding that bunching is empirically relevant. This is
in line with Rochet and Chone (1998), who use the utility function from Rochet (1987) to argue
that bunching is a common occurrence for a multiproduct monopolist’s problem due to a tension
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between participation constraints and second order conditions. In our calibrated application of
optimal couples taxation, we also find that bunching is empirically relevant, especially at the
bottom of the income distribution. The findings from our numerical simulations are additive in
that they highlight the relevance of bunching in a setting without participation constraints and
without the linear, separable utility function of Rochet (1987).

The rest of this paper proceeds as follows. Section 2 presents the environment, introduces
relevant notation, and discusses useful mathematical preliminaries. Section 3 states our main
results on incentive compatibility and provides intuition by relating our results to existing results
in the literature. Section 4 introduces the numerical method we use to solve multidimensional
screening problems. Section 5 illustrates this method using a number of numerical examples
related to optimal multidimensional taxation. Section 6 concludes.

2 Environment, Notation, Mathematical Preliminaries

In this section we present the environment and relevant notation, introduce our generalized
single crossing property, and discuss a few mathematical preliminaries.

2.1 The Environment

The model consists of a population of individuals, indexed by type n = (n1, n2, ..., nK) ∈
N = N1 × N2 · · · × NK . We assume that the boundary of N, denoted ∂N, is smooth. We
assume that the distribution of types, denoted F (n1, n2, ..., nK) is continuously differentiable
with density f(n1, n2, ..., nK). An individual’s type n is private information. Individuals have
preferences over a monetary transfer from the screening entity, T (z), as well asK choice variables
z = (z1, z2, ..., zK) ∈ Z, which are all observable by the screening entity.1 Individuals solve the
following maximization problem:

max
z

u(T (z), z;n) (1)

where u(T (z), z;n) is a smooth utility function satisfying uT > 0 and uTT ≤ 0.

In general multidimensional screening problems (such as non-linear pricing, optimal taxation
with multidimensional instruments, or regulation of multiproduct monopolies), some entity (e.g.,
a government or a firm) contracts with individuals by choosing a transfer (or tax) function T (z)
which gives individuals a monetary payoff for making choices z. The entity seeks to maximize
some objective function subject to constraints conditional on all individuals optimizing their
own utility. Equivalently, due to the revelation principle, this entity can consider choosing
allocations (T (z(n)), z(n)) for each type n subject to the constraint that the chosen allocation
is incentive compatible in the sense that for all types n:2

u(T (z(n)), z(n);n) = max
n′

u(T (z(n′)), z(n′);n)

Hence, understanding which allocations are incentive compatible is a necessary precursor to
characterizing optimality. Our first goal then is to understand which allocations (T (z(n)), z(n))
are incentive compatible.

1To begin, we assume the dimension of the choice set is equal to the dimension of the type space; however,
we discuss later how our results can be extended to cases where these dimensions differ.

2Restricting T (·) to be a function of z(n) rather than n is WLOG as any allocation featuring z(n) = z(n′)
and T (n) ̸= T (n′) for n ̸= n′ is clearly not incentive compatible (as one of the individuals n,n′ can improve
utility by pretending to be the other type, yielding the same z and higher T , which improves utility as uT > 0).
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2.1.1 A Note on Notation

The arguments of the various gradients throughout the paper can be somewhat cumbersome.
Subscripts denote partial derivatives with respect to a single variable, for example:

uT (T (z(n)), z(n);n) ≡
∂u(T, z(n);n)

∂T

∣∣∣∣
T=T (z(n))

un1(T (z(n)), z(n);n) ≡
∂u(T, z;n)

∂n1

∣∣∣∣
T=T (z(n)),z=z(n)

∇zu(T (z(n)), z(n);n) denotes the partial derivative (gradient) with respect to the vector z:

∇zu(T (z(n)), z(n);n) ≡ ∇xu(T (z(n)),x;n)|x=z(n) =

uz1(T (z(n)), z(n);n)...
uzK (T (z(n)), z(n);n)


Similarly, if we write ∇nu(T (z(n)), z(n);n), this denotes:

∇nu(T (z(n)), z(n);n) =

un1(T (z(n)), z(n);n)
...

unK (T (z(n)), z(n);n)


In contrast, we use the following notation for total derivatives:

Dzu(T (z(n)), z(n);n) = uT (T (z(n)), z(n);n)∇zT (z(n)) +∇zu(T (z(n)), z(n);n)

Dnu(T (z(n)), z(n);n) = ∇nu(T (z(n)), z(n);n) +Dzu(T (z(n)), z(n);n)∇nz(n)

2.2 Generalized Single Crossing Property and Technical Preliminaries

Before we discuss our main results on incentive compatibility, we need to explain our “general-
ized single crossing property” as well as introduce a few pieces of mathematical machinery. In
particular, we need to introduce the concept of a diffeomorphism, we need to define P matrices,
and we need to discuss the multidimensional envelope condition. First, we are going to rely
heavily on the concept of a diffeomorphism from differential geometry:

Definition 1. A diffeomorphism is a continuously differentiable bijective function which also
has a continuously differentiable inverse.3

For example, f(x, y) = (x3 + x, 2y + 1) is a diffeomorphism from R
2 → R

2, but f(x) = x3 is
not a diffeomorphism from R → R even though this function is bijective because it does not
have a differentiable inverse when x = 0. We also define local diffeomorphisms:

Definition 2. A function is a local diffeomorphism at a given point if there exists an open
set containing that point where the function is differentiable, bijective, and has a continuously
differentiable inverse. We refer to a function as a local diffeomorphism if it is a local diffeo-
morphism at all points.

3Note, some authors define diffeomorphisms to be infinitely differentiable. We follow Hirsch (1988) and
Encyclopedia of Mathematics (2022) in only requiring a diffeomorphism to be continuously differentiable.
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Equivalently, by the inverse function theorem, a function that is continuously differentiable on
an open neighborhood around a point is a local diffeomorphism at that point if and only if its
derivative matrix is invertible. It is also useful to point out the well-known result that a local
diffeomorphism is a diffeomorphism if and only if it is globally injective.

Next, we are going to restrict attention to a particular class of problems that satisfy what
we refer to as the “generalized single crossing property”:4

Assumption 1 (Generalized Single Crossing Property). For all T, z, the following function is
a diffeomorphism:

n 7→ ∇zu(T, z;n)

uT (T, z;n)
=


uz1 (T,z;n)

uT (T,z;n)
...

uzK
(T,z;n)

uT (T,z;n)


Assumption 1 can be viewed as a multidimensional generalization of the standard single

crossing property in the unidimensional setting. In the unidimensional setting, the standard
single crossing property, which is written entirely in terms of primitives of the model, ensures
that under any incentive compatible allocation, if a given n is mapped to a z, then no other
type n′ is mapped to the same z whenever T (z(n)) and z(n) are differentiable.5 As with the
unidimensional single crossing property, Assumption 1 is written entirely in terms of model
primitives and ensures that under any incentive compatible allocation, if a given n is mapped
to a z, then no other type n′ is mapped to z whenever T (z(n)) is differentiable as a function of
z at a given n and z(n) is a local diffeomorphism in a neighborhood around the given n. Under
these conditions, we show in Section 3 that the following first order conditions must hold for
any incentive compatible allocation:

uT (T (z(n)), z(n);n)Tz1(z(n)) + uz1(T (z(n)), z(n);n) = 0

...

uT (T (z(n)), z(n);n)TzK (z(n)) + uzK (T (z(n)), z(n);n) = 0

Equivalently, we have:

uz1(T (z(n)), z(n);n)

uT (T (z(n)), z(n);n)
= −Tz1(z(n))

...

uzK (T (z(n)), z(n);n)

uT (T (z(n)), z(n);n)
= −TzK (z(n))

(2)

By Assumption 1, no two types n and n′ can simultaneously solve Equation 2 for a given
z, which shows that the generalized single crossing property ensures that any mapping with
z(n) = z(n′) for n ̸= n′, T (z(n)) differentiable, and n 7→ z a local diffeomorphism at both n
and n′ cannot be incentive compatible.

4As far as we know, this sort of “twist” condition has not been used in the optimal screening literature.
However, it has been applied in the theory of optimal transport and dynamical systems (e.g., Villani (2009)) and
has been used in the optimal multidimensional matching literature (e.g., Chiappori, McCann and Pass (2017)).

5In the unidimensional setting, n denotes type and z denotes the single choice variable. The standard single
crossing property in the unidimensional setting implies that any incentive compatible allocation features mono-
tonic z(n) and strictly monotonic z(n) whenever T (z(n)) and z(n) are differentiable, see Lemma 1 from Bergstrom
and Dodds (2021).
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As an example of a utility function that satisfies Assumption 1 (yet is neither linear in n nor
linear in T , taking us outside the realm of functions considered in Rochet (1987), McAfee and
McMillan (1988), or Carlier (2001)), consider the utility function given by:

v(z1 + z2 + T )− 1

1 + θ1

(
z1
n1

)1+θ1

− 1

1 + θ2

(
z2
n2

)1+θ2

− β
z1
n1

z2
n2

(3)

for some increasing, concave v(·) and θ1, θ2, β ≥ 0. This function satisfies Assumption 1 as long
as N is a rectangular domain in R2

++, as a result of Theorem 4 from Gale and Nikaido (1965),
which provides a sufficient condition for a mapping to be diffeomorphic:

Remark 1. A mapping n 7→ z with a continuous P matrix Jacobian on a closed rectangular
domain is a diffeomorphism.6

As the concept of a P matrix will come up numerous times throughout this paper, let us define
what a P matrix is:

Definition 3. A P matrix is a square matrix whose principal minors are all positive.

Returning to utility function 3, we have:

n 7→ uz(T, z;n)

uT (T, z;n)
=

[uz1 (T,z;n)

uT (T,z;n)
uz2 (T,z;n)

uT (T,z;n)

]
=

1

v′(z1 + z2 + T )

− z
θ1
1

n
1+θ1
1

− β z2
n1n2

− z
θ2
2

n
1+θ2
2

− β z1
n1n2


Taking the partial derivative of the above with respect n (holding T and z fixed):

∇n

 1

v′(z1 + z2 + T )

− z
θ1
1

n
1+θ1
1

− β z2
n1n2

− z
θ2
2

n
1+θ2
2

− β z1
n1n2


 =

1

v′(z1 + z2 + T )

 (1+θ1)z
θ1
1

n
2+θ1
1

+ β z2
n2
1n2

β z2
n1n2

2

β z1
n2
1n2

(1+θ2)z
θ2
2

n
2+θ2
2

+ β z1
n1n2

2


which is a P matrix, hence diffeomorphic on any rectangular domain N in R2

++ by Remark 1.7

Next, we present the envelope condition. We say that an allocation (T (z(n)), z(n)) satisfies
the envelope condition if the function U(n) ≡ u(T (z(n)), z(n);n) satisfies the following for any
n1 and n2 and any path between these two points (denoting a path integral by

∮
):

U(n1)− U(n2) =

∮ n1

n2

∇nu(T (z(n)), z(n);n) · dn (4)

Finally, on a technical note, we will assume throughout that the function z(n) ∈ L2(N) and
U(n) ∈ H1(N), where H1(N) is the Sobolev space of functions which have finite L2 norm and
whose (weak) derivatives have finite L2 norm.8

6Theorem 4 in Gale and Nikaido (1965) provides a condition for a mapping to be injective; however, it is a
standard result that any injective local diffeomorphism is a global diffeomorphism onto its range (the determinant
of a P matrix never vanishes which, together with the continuity assumption on the Jacobian, ensures any mapping
with a P matrix Jacobian is a local diffeomorphism). As an aside, a slightly different result is Theorem 6 from
Gale and Nikaido (1965), which tells us that a mapping n 7→ z with a Jacobian, J , on a convex domain such that
1
2
(J + JT ) is positive (or negative) definite is also a diffeomorphism.

7Assuming we can restrict attention to z1, z2 ≥ 0 and either z1 > 0 or z2 > 0.
8This is a standard assumption in mutlidimensional screening, e.g., Rochet and Chone (1998) or Carlier (2001).
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3 Main Results

Next we present our main results characterizing incentive compatibility. The core insight is to
use the structure provided when the allocation is sufficiently smooth (i.e., T (z) is differentiable
and z(n) is a local diffeomorphism) along with the generalized single crossing property (As-
sumption 1) to make statements about incentive compatibility. Building towards these ideas,
note that when T (z) is differentiable and n 7→ z is a local diffeomorphism, the following first
order condition must hold for all types n under any incentive compatible allocation:

{uT (T (z(n)), z(n);n)∇zT (z(n)) +∇zu(T (z(n)), z(n);n)}∇nz(n) = 0 (5)

Or, using the fact that ∇nz(n) is invertible when n 7→ z is a local diffeomorphism:

FOC(z(n);n) ≡ uT (T (z(n)), z(n);n)∇zT (z(n)) +∇zu(T (z(n)), z(n);n) = 0 (6)

Rewriting n (locally) as a function of z rather than the reverse, Equation 6 implies:

∇zT (z) = −∇zu(T (z), z;n(z))

uT (T (z), z;n(z))
(7)

The right hand side is differentiable in z, which implies that ∇zT (z) is differentiable (and hence
continuous) in z. But then, if n(z) and T (z) are both continuously differentiable in z, Equation
7 implies that ∇zT (z) is also continuously differentiable. Hence, we have shown that:

Lemma 1. T (z(n)) is twice continuously differentiable in z under any incentive compatible
allocation at all n for which T (z(n)) is differentiable and z(n) is a local diffeomorphism at n.

Under the conditions of Lemma 1, we can totally differentiate Equation 6:

DnFOC(z(n);n) = ∇zFOC(z(n);n)∇nz(n) +∇nFOC(z(n);n) = 0 (8)

So under the conditions of Lemma 1, the matrix of second partial deriviatves of u(T (z), z;n)
with respect to z, denoted ∇zFOC(z(n);n), is equal to −∇nFOC(z(n);n)[∇nz(n)]

−1. Hence,
the second order condition that u(T (z), z;n) is concave in z around z(n) is equivalent to
∇nFOC(z(n);n)[∇nz(n)]

−1 being positive semi-definite. This second order condition on the
matrix ∇nFOC(z(n);n)[∇nz(n)]

−1 will be important for our general results on incentive com-
patibility.9 This brings us to our first main result:

Theorem 1. Suppose Assumption 1 holds. Consider an allocation (T (z(n)), z(n)) such that
N is compact and the image of N under the function n 7→ (T (z(n)), z(n)) is compact. In
order for this allocation to be incentive compatible: (1) U(n) must satisfy the envelope condi-
tion 4, (2) at points n where n 7→ z is a local diffeomorphism and T (z(n)) is differentiable
then ∇nFOC(z(n);n)[∇nz(n)]

−1 must be positive definite, and (3) whenever n 7→ z is a local
diffeomorphism and T (z(n)) is differentiable at two points n and n′ then z(n) ̸= z(n′).

Proof. See Appendix A.1.

9Using∇nFOC(z(n);n)[∇nz(n)]
−1 rather than∇zFOC(z(n);n) will turn out to be helpful later on especially

when utility is separable in T (z) and z because it allows us to remove explicit dependence on T (z) from the second
order condition.
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Theorem 1 says that if the envelope condition 4 does not hold, or if the second order condition
does not hold at points n where n 7→ z is a local diffeomorphism and T (z) is differentiable,
or if the allocation is not globally injective across the set of points for which n 7→ z is locally
diffeomorphic and T (z) is differentiable, then the allocation is not incentive compatible. One
simple way to apply Theorem 1 in practice is to check the Jacobian matrix of n 7→ z:

Corollary 1.1. Suppose Assumption 1 is satisfied. Suppose n 7→ z is locally diffeomorphic
and T (z(n)) is differentiable in z at two points for which the determinant of the Jacobian,
det(∇nz(n)), has different signs. Then then this allocation is not incentive compatible.

Proof. See Appendix A.2.

Points (2) and (3) of Theorem 1 rely entirely on the structure generated when the allocation
is sufficiently smooth (i.e., n 7→ z is locally diffeomorphic and the transfer schedule is differen-
tiable); hence, Theorem 1 places no restrictions on the portions of an allocation which are not
sufficiently smooth (other than satisfying the envelope condition and the implicit restriction
that any two sufficiently smooth portions of the mapping n 7→ z must be globally injective).
Hence, there are likely some pathological allocations which are not incentive compatible yet
do not violate any criteria specified in Theorem 1. However, this is likely inconsequential in
practice, as it often seems sensible to restrict ourselves to reasonably smooth allocations when
solving multidimensional screening problems numerically. For instance, the following Corollary
follows immediately from Theorem 1 if we restrict ourselves to sufficiently smooth allocations:

Corollary 1.2. Suppose the utility function satisfies Assumption 1. Consider an allocation
(T (z(n)), z(n)) such that T (z) is differentiable and n 7→ z is a local diffeomorphism on compact
domain N. Then this allocation is incentive compatible only if (1) U(n) satisfies the envelope
condition 4, (2) ∇nFOC(z(n);n)[∇nz(n)]

−1 is positive definite ∀n, and (3) n 7→ z is injective.

But if we are willing to restrict ourselves to consider allocations for which T (z) is differen-
tiable and n 7→ z is a local diffeomorphism along with the limits of such allocations, we can
actually devise a necessary and sufficient condition for incentive compatibility:

Theorem 2. Part (a): Suppose Assumption 1 holds. Consider an allocation (T (z(n)), z(n))
such that n 7→ z is a local diffeomorphism with compact domain N and T (z) is differentiable.
Then this allocation is incentive compatible if and only if (1) U(n) satisfies the envelope condi-
tion 4, (2) n 7→ z is injective, and (3) all individuals n satisfy:

u(T (z(n)), z(n);n) ≥ u(T (z(n′)), z(n′);n) ∀n′ ∈ ∂N

Part (b): For any uniformly convergent sequence (Tj(zj(n)), zj(n)), indexed by j, satisfying the
above properties, the limit (T (z(n)), z(n)) = limj→∞(Tj(zj(n)), zj(n)) also yields an incentive
compatible allocation.

Proof. See Appendix A.3.

Part (a) of Theorem 2 essentially says that if we restrict ourselves to sufficiently smooth
mechanisms, then we only need to ensure that the envelope condition is satisfied, the allocation
is injective, and that everyone prefers their assigned bundle to bundles assigned to individuals
on the boundary; hence, this reduces the set of relevant incentive compatibility constraints in a
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meaningful way. Necessity of these conditions follows from Theorem 1; the idea behind showing
sufficiency is to leverage Assumption 1. If the envelope condition 4 holds, the transfer schedule
is differentiable, and n 7→ z is both locally diffeomorphic and injective (i.e., diffeomorphic),
Assumption 1 ensures that no n ̸= n′ can have a local optima at (T (z(n′)), z(n′)). This means
that (T (z(n)), z(n)) is the only critical point for each type n. Given that u(T (z(n′)), z(n′);n) is
a continuous function of n′ on a compact domain N, it has a global maximum that must either
be at the sole critical point or the boundary. Given that the sole critical point is preferred to
all bundles chosen by individuals on the boundary (n′ ∈ ∂N), the sole critical point must be
the global maximum.

Note, Theorem 2 does not require us to check second order conditions: first order conditions
holding (via the envelope condition 4) and all individuals preferring their assigned bundle to all
boundary bundles implies that local second order conditions must hold strictly ∀n:10

Remark 2. Any allocation satisfying the conditions of Theorem 2 has second order conditions
holding strictly so that:

∇nFOC(z(n),n)[∇nz(n)]
−1 is positive definite

However, one may naturally be concerned that the optimal allocation features non-differentiable
T (z) and/or n 7→ z which is not a local diffeomorphism. For example, allocations which feature
bunching typically entail non-differentiable T (z) and n 7→ z which are not locally diffeomorphic.
Rochet and Chone (1998) show that bunching will necessarily occur under certain circumstances
in particular multi-product monopolist problems; hence, it is important that our theory can be
applied when the optimal allocation is non-smooth. Fortunately, Part (b) of Theorem 2 shows
that our theory can be extended to many such allocations via a simple limiting argument: the
uniform limit of allocations with locally diffeomorphic n 7→ z and differentiable T (z) satisfying
conditions (1), (2), and (3) from Theorem 2 is incentive compatible.

From a practical perspective, Theorem 2 allows us to drastically reduce the set of relevant
incentive compatibility constraints when solving screening problems. Suppose we are trying
to solve a screening problem on a square grid of size m × m. If we naively attempted to
impose all incentive compatibility constraints, we would have m4 constraints as each of the m2

points has m2 constraints. Under the conditions in Theorem 2, we only need to check m2 first
order conditions plus m2 × 4(m − 1) boundary conditions plus ensure that n 7→ z is injective.
Fortunately, we can often utilize Remark 1 and Corollary 1.1 to check the injectivity of n 7→ z
in terms of m2 conditions on the Jacobian of n 7→ z. This order of magnitude is important: if
we solve a two dimensional screening problem on a 1000 × 1000 grid, Theorem 2 reduces the
number of incentive compatibility constraints we need to check from ≈ 1 trillion down to ≈ 4
billion, which is a considerable improvement.

While Theorem 2 is perhaps elegant from a mathematical perspective in the sense that it
allows us to reduce the number of relevant incentive compatibility constraints by an order of
magnitude, it would be great if we could further reduce the number of incentive compatibility
constraints. In particular, can we find a way to further reduce the set of incentive compatibility
constraints down to only local constraints (i.e., local first and second order incentive compat-
ibility constraints)? Unfortunately, the answer to this question appears to be, in general, no.

10By the fact that the allocation is incentive compatible, second order conditions must hold weakly so that
∇nFOC(z(n),n)[∇nz(n)]

−1 is positive semidefinite. But det[∇nFOC(z(n),n)[∇nz(n)]
−1] ̸= 0 by Assumption

1 and the fact n 7→ z is a local diffeomorphism (see discussion in point (2) of Appendix A.1 for a proof of this
fact), so that ∇nFOC(z(n),n)[∇nz(n)]

−1 must be positive definite.
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Why? Well, the “trick” behind Theorem 2 is essentially to use Assumption 1 to ensure that each
type n has a unique critical point for their utility maximization problem when the allocation is
sufficiently smooth. However, even if second order conditions hold so that this unique critical
point is a local maximum, it need not be the case that the unique local maximum of a multivari-
able function is the global maximum.11 Thus, in general, we cannot dispense with the condition
that individuals prefer their assigned bundle to boundary bundles. This contrasts to the uni-
dimensional setting: if an individual has a unique critical point for their utility maximization
problem which is a local maximum, then it is the global maximum; this follows essentially from
the mean value theorem. Similarly, Rochet (1987) and McAfee and McMillan (1988) both show
that first and second order conditions are sufficient for incentive compatibility when utility is
linear and separable in type because the linearity and separability ensures that the mean value
theorem does hold for these specific vector valued functions. But extending this result to the
multidimensional setting for general utility functions appears to be impossible precisely because
the mean value theorem does not hold for vector valued functions.

Finally, we note that Theorem 1 and Theorem 2 can sometimes be extended to settings in which
dim(n) ̸= dim(z) by restricting to appropriate subspaces, see Appendix A.4.

3.1 Relationship to Previous Results

For completeness, we will now discuss in detail how our results compare with previous incentive
compatibility results. However, the material in this section is not crucial for understanding the
main ideas, so readers in a hurry can skip to Section 4.

First, we discuss the relationship to the well known incentive compatibility result in one
dimension, which states that if the single crossing property holds, an allocation is incentive
compatible if and only if z(n) is non-decreasing and U(n) satisfies the envelope condition, see,
for example, Mirrlees (1971). In the unidimensional setting, n denotes type and z denotes the
single choice variable. Assumption 1 is equivalent to the standard single crossing property in
one dimension if utility is given by u(c, z/n) and c = z + T where T is the transfer function
(i.e., the negative tax function). Because the function c 7→ T is bijective conditional on any
given z, it is WLOG to consider the government as choosing the function c(z(n)) as opposed to
T (z(n)). In this case, Assumption 1 requires that for all c, z:12

∂

(
u2(c, zn)
nu1(c, zn)

)
∂n

> 0

And this is exactly the standard single crossing property, see, e.g., Mirrlees (1971). Theorem 1
shows that if the second order condition does not hold when n 7→ z is a local diffeomorphism
and the transfer schedule is differentiable, then the allocation is not incentive compatible. In the
unidimensional case, this implies that if z′(n) < 0 on some neighborhood, then the allocation

11For example, the function f(x, y) = −x2 − y2(1−x)3 has a unique critical point (a local maximum) at (0, 0),
which is clearly not a global maximum as this function grows arbitrarily large as x→ ∞ when y ̸= 0.

12Technically, Assumption 1 tells us that:

∂

(
u2(c, zn )
nu1(c, zn )

)
∂n

> 0 or

∂

(
u2(c, zn )
nu1(c, zn )

)
∂n

< 0

But if
∂

(
u2(c, z

n )
nu1(c, z

n )

)
∂n

< 0, then
∂

(
u2(c,− z

−n )
nu1(c,− z

−n )

)
∂(−n)

> 0 and we can just relabel m ≡ −n, at which point an allocation

is incentive compatible if and only if z(m) is non-decreasing and satisfies the envelope condition.
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is not incentive compatible.13 14 Hence, in the unidimensional setting, Theorem 1 boils down
to the statement that non-monotonic z(n) is not incentive compatible as long as z(n) and T (z)
are sufficiently smooth. In contrast, the standard unidimensional incentive compatibility result
does not require differentiability to conclude that a given allocation is not incentive compatible
(i.e., the standard result shows that any decreasing z(n) is not incentive compatible). This
highlights how our approach is able to say more about the multidimensional case via the added
structure of differentiability, but relying on differentiability comes at the cost of not being able
to ascertain whether some non-differentiable allocations are incentive compatible.

On the flip side, Theorem 2 tells us in the unidimensional case that any continuous allocation
is incentive compatible if z(n) is non-decreasing and U(n) satisfies the envelope condition, which
is (essentially) the standard unidimensional sufficient condition. To see why, first note that the
set of unidimensional local diffeomorphisms (i.e., functions whose derivative never vanishes) is
simply the set of monotonic functions. Then note that:

Remark 3. Consider a unidimensional setting with a utility function satisfying the single cross-
ing property. If T (z) is differentiable, n 7→ z is locally diffeomorphic (i.e., monotonic), and U(n)
satisfies the envelope condition, then all individuals prefer their assigned bundle to boundary
bundles if and only if z′(n) > 0.

Proof. See Appendix A.5.

Hence, in the unidimensional case, Part (a) of Theorem 2 tells us that any strictly increasing
differentiable monotonic function z(n) with differentiable U(n) satisfying the envelope condition
is incentive compatible.15 Part (b) of Theorem 2 then tells us that the uniform limit of any such
functions is incentive compatible. But note that the uniform limit of strictly monotonic func-
tions is necessarily weakly monotonic; moreover, any bounded (weakly) continuous monotonic
function on an interval can be expressed as the uniform limit of strictly monotonic differentiable
functions.16 Thus, in the unidimensional case the sufficient condition in Theorem 2 reduces to
saying that any non-decreasing continuous z(n) with U(n) satisfying the envelope condition is
incentive compatible.17

Next, it’s useful to discuss how our results relate to the other case which has been studied
extensively in the literature: the model of Rochet (1987) and Rochet and Chone (1998), wherein

13 The second order condition requires FOCn[z
′(n)]−1 to be a positive definite matrix (i.e., positive), where

FOCn is the partial derivative of FOC(z(n), n) ≡ uT (T (z(n)), z(n);n)T
′(z(n))+uz(T (z(n)), z(n);n) with respect

to n holding z(n) fixed. FOCn is necessarily positive by the single crossing property, so FOCn[z
′(n)]−1 is positive

if and only if z′(n) > 0. Hence, if z′(n) < 0 then we have FOCn[z
′(n)]−1 < 0, which means the allocation is not

incentive compatible by Theorem 1.
14Theorem 1 also says a unidimensional allocation is not incentive compatible if two different types n and n′

are mapped to the same z for which n 7→ z is locally diffeomorphic and the transfer schedule is differentiable at
both n and n′; this also implies that there must be some region of non-monotonicity in the mapping n 7→ z.

15Lemma 2 below shows that locally diffeomorphic z(n) and differentiable U(n) satisfying the envelope condition
implies the transfer schedule T (z) will be differentiable.

16 This follows because (1) every continuous monotonic function can be approximated arbitrarily well (uni-
formly) by monotonic polynomials (DeVore and Yu, 1985), and (2) every monotonic polynomial on an interval
is approximated arbitrarily well by a strictly monotonic polynomial (by adding ϵx for small ϵ).

17Hence, Theorem 2 is slightly weaker than the standard sufficient condition because it requires z(n) to be
continuous. Bergstrom and Dodds (2021) provide a condition on primitives in the unidimensional setting which
ensures that the optimal z(n) is continuous; under this condition Theorem 2 coincides with the standard sufficient
condition.
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individual preferences are quasi-linear in consumption and linear in type n:

u(T, z;n) = y(z) + T + n · v(z) (9)

with v(z) increasing in z1, z2, ..., zK . Rochet (1987) showed that if utility is given by 9 and N is a
convex subset ofRK , then (T (z(n)), z(n)) is incentive compatible if and only if U(n) satisfies the
envelope condition 4 and U(n) is convex in n. Theorem 1 says that ∇nFOC(z(n);n)[∇nz(n)]

−1

must be positive definite if n 7→ z is a local diffeomorphism and T (z) is differentiable. When
utility is given by Equation 9, we have that (we omit the n argument of z(n) and ∇nz(n) in
the matrices below for brevity):

∇nFOC(z(n);n)[∇nz(n)]
−1 =

vz1(z) · · · 0
...

0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK


−1

(10)

On the other hand, convex functions are twice differentiable almost everywhere (Alexandrov’s
Theorem), which means one can calculate the Hessian matrix (w.r.t n) of U(n) a.e. as:18 vz1(z)

∂z1
∂n1

· · · vz1(z)
∂z1
∂nK

...

vzK (z)
∂zK
∂n1

· · · vzK (z)
∂zK
∂nK

 =

vz1(z) · · · 0
...

0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK

 (11)

Appendix A.6 shows that Equation 10 is positive definite if and only if Equation 11 is
positive definite. Hence, Theorem 1 requires Equation 10 (and therefore Equation 11) to be
positive definite whenever n 7→ z is locally diffeomorphic and T (z) is differentiable, which
implies that any incentive compatible allocation has U(n) strictly convex at all points for which
n 7→ z is locally diffeomorphic and T (z) is differentiable. However, Theorem 1 is slightly weaker
than Rochet (1987)’s necessary condition because it places no condition on the convexity of
U(n) when n 7→ z is not locally diffeomorphic or T (z) is non-differentiable at a given n other
than the implicit global constraint that if the allocation is a local diffeomorphism (and T (z) is
differentiable) at two points n and n′, then z(n) ̸= z(n′).

Next, we show that for utility function 9, Theorem 2 tells us that allocations with con-
tinuous (T (z(n)), z(n)) and convex U(n) such that the envelope condition holds are incentive
compatible. First, note that any allocation satisfying the conditions of Part (a) of Theorem
2 must have the envelope condition 4 holding and differentiable, strictly convex U(n). This
is because any allocation satisfying the conditions of Part (a) of Theorem 2 has second order
conditions holding strictly (see Remark 2) so that Equation 10 (and therefore Equation 11) is
positive definite. Moreover, any allocation satisfying the envelope condition 4 everywhere with
differentiable, strictly convex U(n) satisfies the conditions required in Theorem 2 because: (1)
n 7→ z is locally diffeomorphic as Equation 11 is positive definite (so that det[∇nz(n)] ̸= 0), (2)
n 7→ z is injective because if two types n,n′ are mapped to the same z, then U(n)− U(n′) is a
linear function of n−n′, hence not strictly convex, and (3) all individuals prefer their assigned
bundle to boundary bundles by a mean value theorem argument (see McAfee and McMillan
(1988)).19 Part (b) of Theorem 2 then strengthens this relationship by telling us that the uni-
form limit of allocations with differentiable, strictly convex U(n) with the envelope condition 4

18Note, we have used the envelope condition 4 in calculating this Hessian.
19Also, T (z) is differentiable by Lemma 2 below.

12



holding is incentive compatible. Hence, for utility function 9, Part (b) of Theorem 2 tells us that
allocations with continuous (T (z(n)), z(n)) and convex U(n) such that the envelope condition
holds are incentive compatible.20 When utility is given by Equation 9, optimal (T (z(n)), z(n))
is always continuous; thus, the sufficient condition in Theorem 2 coincides with the sufficient
criterion from Rochet (1987).21

Our results are also related to McAfee and McMillan (1988), who show that first and second
order conditions are necessary and sufficient to characterize multidimensional incentive com-
patibility if preferences satisfy a sort of single crossing property and one restricts attention to
smooth allocations. The key difference is that their single crossing property is very restric-
tive as they require n 7→ uz(T,z;n)

uT (T,z;n) to satisfy a mean value theorem for vector-valued functions.

Matkowski (2012) shows that only linear functions of n or functions that are linear in n with a
common non-linear component satisfy this property; in practice, it appears to be quite difficult
to find any realistic utility function which satisfies their single crossing property other than the
case where u(T, z;n) is linear and separable in type so that utility is given by:

u(T, z;n) = w(z, T ) + n · v(z) (12)

In contrast, there appear to be many reasonable utility functions which satisfy our generalized
single crossing property such as Equation 3 and Equation 21 used in our numerical simulations
later on. These utility functions do not satisfy the generalized single crossing property from
McAfee and McMillan (1988). A second difference is that the results in McAfee and McMillan
(1988) only pertain to differentiable allocations, which means their results cannot be applied to
situations in which bunching occurs. In contrast, our results can be applied to non-differentiable
allocations (because we only require smoothness in portions of the allocation in Theorem 1 and
via the limiting argument in Theorem 2).

Finally, we compare our results to Carlier (2001), who characterizes incentive compatibility
when preferences are separable and quasi-linear in consumption using the notion of h-convexity.
The first difference between the present paper and Carlier (2001) is that our results do not
require quasi-linearity or separability; however, we do require a generalized single crossing prop-
erty whereas Carlier (2001) does not require any sort of single crossing condition. In this sense,
our results are complementary. Secondly, our necessary conditions (Theorem 1 and Corollary
1.2) can be checked using local properties of the allocation (note injectivity of n 7→ z can often be
checked via Remark 1 and Corollary 1.1); this local description aids greatly in solving screening
problems numerically. In contrast, Carlier (2001)’s characterization of incentive compatibility
is based on global h-convexity constraints which are arguably less intuitive and cannot (to my
knowledge) be expressed in terms of local properties of the allocation, making them less useful
for numerically solving optimal screening problems.

4 Solving Multidimensional Screening Problems Numerically

The next question we want to address is: how can we use the results from Section 3 to actually
solve multidimensional screening problems in practice? Suppose we want to optimize some ob-
jective function subject to incentive compatibility constraints (and potentially other constraints,

20The fact that every convex function can be approximated with a differentiable, strictly convex function
results from the facts that (1) every convex function can be approximated arbitrarily well using a strictly convex
function, (2) we assume U(n) ∈ H1(N), and (3) the set of infinitely differentiable functions over N, C∞(N), is
dense in the Sobolev space H1(N); see Theorem 8.7 of Brezis (2011).

21Proposition 6 of Rochet and Chone (1998) states this fact without proof; we thus prove in Appendix A.12
that z(n), and therefore T (z(n)), must be continuous when preferences are given by utility function 9.
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such as participation constraints, budget constraints, or non-negativity constraints):

max
z(n),T (z(n))

Objective

s.t. n ∈ argmax
n′

u(T (z(n′)), z(n′);n) ∀n

Other Constraints

(13)

One path to solving System 13 might be to simply apply Theorem 2 and search over all allo-
cations with differentiable T (z) and diffeomorphic n 7→ z that satisfy the envelope condition and
for which all individuals prefer their assigned bundle to all boundary bundles. However, because
there are fewer second order condition constraints than there are constraints that all individuals
prefer their assigned bundle to all boundary bundles, we will instead appeal to Corollary 1.2
and search over all allocations such that: (1) U(n) is differentiable and satisfies the envelope
condition 4, (2) second order conditions are satisfied, and (3) n 7→ z is a local diffeomorphism
(i.e., det(∇nz(n)) never vanishes). We don’t need to impose that T (z) is differentiable because
of the following Lemma:

Lemma 2. Consider any potential allocation (T (z(n)), z(n)) which yields differentiable U(n)
satisfying the envelope condition 4. If n 7→ z is a local diffeomorphism, then T (z) is twice
continuously differentiable.

Proof. See Appendix A.7.

Then, we can check to ensure that any proposed optimal allocation satisfying the above crite-
ria of Corollary 1.2 satisfies the sufficient conditions of Theorem 1: n 7→ z is injective and all in-
dividuals prefer their assigned bundles to boundary bundles. This allows us to state our general
technique to solve multidimensional screening problems (WLOG, we assume det(∇nz(n)) > 0
rather than det(∇nz(n)) < 0):

max
z(n),T (z(n))

Objective

s.t. U(n1)− U(n2) =

∮ n1

n2

∇nu(T (z(n)), z(n);n) · dn ∀n1,n2

∇nFOC(z(n);n)[∇nz(n)]
−1 is positive definite

det(∇nz(n)) > 0

U(n) = u(T (z(n)), z(n);n)

Other Constraints

(14)

Note, we can further simplify System 14 in two ways. First, instead of maximizing over
(z(n), T (z(n))), let us maximize over (z(n), U(n)).22 Second, note that we only actually have
a choice over utility at single point, U(n) as utility at all other levels is determined by the
envelope condition given utility at a given point n. Hence, we can instead simply think about
choosing the function z(n) and the scalar U(n), and defining U(n) by the envelope condition.
In doing so, we must incorporate the fact that U(n) must be a function so that

∇nu(T (z(n)), z(n);n)

22We define T (z(n)) implicitly by U(n) = u(T (z(n)), z(n);n).
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forms a conservative vector field. Hence, we can recast System 14 as:

max
z(n),U(n)

Objective

s.t. U(n) = U(n) +

∮ n

n
∇su(T (z(s)), z(s); s) · ds

∇nFOC(z(n);n)[∇nz(n)]
−1 is positive definite

det(∇nz(n)) > 0

U(n) = u(T (z(n)), z(n);n)

∇nu(T (z(n)), z(n);n) is conservative

Other Constraints

(15)

System 15 is an optimization problem with linear and non-linear constraints. If we find a
global maximizer for this problem, then we know that it is globally optimal among smooth
allocations by Theorem 2 if: (1) n 7→ z is injective, which can be checked via Remark 1, and
(2) all individuals prefer their assigned bundles to boundary bundles.

Finally, it is very important to mention that the approach we have outlined to solve multidi-
mensional screening problems assumes that the optimal allocation is smooth (n 7→ z is a local
diffeomorphism and T (z) is differentiable). But what if the optimal allocation is not smooth
(e.g., features bunching)? As long as the true optimal schedule can be approximated arbitrarily
well by smooth functions (which I conjecture is true for most realistic scenarios), then solv-
ing System 15 will simply find a smooth allocation which is arbitrarily close to the optimal
allocation.

4.1 Separable Utility

It turns out that we can strengthen our results and simplify System 15 substantially if we
restrict ourselves to utility functions which have the nice separable form:

u(T, z;n) = u(0)(T, z) +
K∑
i

u(i)(zi, ni) (16)

When utility is given by Equation 16, we can prove the following two propositions:

Proposition 1. Consider any utility function given by Equation 16 on a rectangular domain N.

Suppose ∂2u(i)(zi,ni)
∂zi∂ni

> 0 ∀i. Any allocation for which ∇nFOC(z(n);n)[∇nz(n)]
−1 is positive

definite ∀n has diffeomorphic n 7→ z.

Proof. See Appendix A.8.

Proposition 2. Consider any utility function given by Equation 16. Any allocation for which
∇nFOC(z(n);n)[∇nz(n)]

−1 is positive definite ∀n generates a conservative vector field ∇nu(T (z(n)), z(n);n).

Proof. See Appendix A.9.

Propositions 1 and 2 both use the fact that utility function 16 will always yield a matrix
∇nFOC(z(n);n) that is diagonal; this additional structure is the key feature that allows us
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to prove these statements. Proposition 1 implies that when utility is given by Equation 16,
any allocation satisfying the envelope condition 4 and the second order condition everywhere
will satisfy our necessary conditions for incentive compatibility given by Theorem 1. Moreover,
Proposition 1 allows us to replace the conditions from Theorem 2 that n 7→ z is a local dif-
feomorphism and that n 7→ z is injective with the simpler requirement that the second order
condition is satisfied ∀n:

Corollary 2.1. Suppose Assumption 1 holds and utility is given by Equation 16 with positive
cross partials as in Proposition 1. Consider an allocation (T (z(n)), z(n)) on compact rectangular
domain N. The following three conditions are sufficient for incentive compatibility: (1) U(n)
satisfies the envelope condition 4, (2) ∇nFOC(z(n);n)[∇nz(n)]

−1 is positive definite ∀n, and
(3) u(T (z(n)), z(n);n) ≥ u(T (z(n′)), z(n′);n) ∀n′ ∈ ∂N.

Moreover, the uniform limit of such allocations is also incentive compatible (as in Theorem 2).

Proof. Lemma 2 ensures T (z) is differentiable and Proposition 1 ensures n 7→ z is a diffeomor-
phism (i.e., an injective local diffeomorphism). Corollary 2.1 then follows immediately from
Theorem 2.

When the conditions for Corollary 2.1 are satisfied, we can simplify System 15 substantially:

max
z(n),U(n)

Objective

s.t. U(n) = U(n) +

∮ n

n
∇su(T (z(s)), z(s); s) · ds

∇nFOC(z(n);n)[∇nz(n)]
−1 is positive definite

U(n) = u(T (z(n)), z(n);n)

Other Constraints

(17)

If we find a solution to System 17 all we need to do is check that all individuals prefer their
assigned bundles to boundary bundles; if so, we have found the optimal allocation within the
class of smooth allocations (n 7→ z is a local diffeomorphism and T (z) is differentiable).

4.2 Relationship to Previous Numerical Methods

To the best of my knowledge, there are two paths that are commonly used to solve multidi-
mensional screening problems numerically. First, one can attempt to use so-called “first order
approaches” that replace the incentive compatibility constraints with first order conditions and
hope that the optimal allocation is interior (so that second order conditions are not binding).
We outline two different first order methods (one based on the Euler-Lagrange equation and one
based on optimal control) in Appendix B. However, there are two potential issues with these
first order approaches. First, the resulting partial differential equation(s) is often quite difficult
to solve. Second, and more importantly, if the optimal allocation is not interior (so that second
order conditions bind) then first order approaches fail to generate the optimal schedule. Typi-
cally, allocations fail to be interior when the optimal allocation features bunching, wherein many
types are assigned to the same bundle.23 Rochet and Chone (1998) show that this phenomenon

23Allocations can also fail to be interior when some individuals have multiple optima, which result in discon-
tinuities in n 7→ z. When the type and action space are both one dimensional, Bergstrom and Dodds (2021)
provide a condition which rules out multiple optima under any optimal allocation as long as the single crossing
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is the norm rather than the exception in a multi-product monopolists problem; we show below
that bunching also appears to be quite common in optimal multidimensional taxation.

When first order approaches fail, there is, as far as we know, only one path forward and it
requires utility to be given by Equation 9 (i.e., linear and separable in type n). When utility
takes this simple form, we can appeal to the convexity characterization of incentive compatibility
from Rochet (1987), which turns the mechanism design problem into a calculus of variations
problem subject to a convexity constraint. Then we can use numerical algorithms designed to
solve variational calculus problems subject to a convexity constraint, e.g., Aguilera and Morin
(2008), Oberman (2013), or Mérigot and Oudet (2014).24

Hence, the numerical method outlined in Section 4 is, as far as we know, the first algo-
rithm designed to solve multidimensional screening problems which can be applied even when
the optimal allocation features bunching and when utility is not linear and separable in type
(the method devised in this paper can be applied whenever Assumption 1 holds).25 Thus, we
believe developing a new numerical method to solve multidimensional screening problems is an
important contribution of this paper.

5 Application: Optimal Multidimensional Taxation

Next, we will illustrate how to apply our incentive compatibility results to a particular class of
screening problems: optimal multidimensional taxation.

5.1 Problem Setup

Individuals make (observable) choices z given characteristics n to maximize utility u(T, z;n),
which depends on the transfer T (z), choices z, and type n (see Problem 1).26 We assume that
uT (T, z;n) > 0. The government chooses the function T (z) to maximize a welfare function sub-
ject to a revenue constraint that total transfers in society plus exogenous per-capita government
expenditures, E, must not exceed zero. The government cannot observe n for any individual,
but can observe both z as well as the distribution of types F (n). We can express this as a
mechanism design problem wherein the government chooses functions z(n) and T (z(n)) and

property holds, but extending this condition to multidimensional settings does not appear to be possible other
than in the case where preferences are given by utility function 19. We prove in Appendix A.12 that individuals
with multiple optima cannot ever be socially optimal when preferences are given by utility function 19. In theory,
the schedule could also not feature bunching or multiple optima, but n 7→ z could simply be pathological, e.g.,
Hencl (2011).

24Technically, a second path forward would be to use the sweeping conditions in Rochet and Chone (1998).
However, this also requires utility to be given by Equation 9 and is more difficult to apply numerically than the
algorithms designed to solve variational calculus problems subject to a convexity constraint.

25Note, the utility function discussed in Section 4.1 is separable in type n but not necessarily linear in type n.
26If T (z) is positive, then the government transfers money to the individual if T (z) is negative, the government

taxes money away from the individual.
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individuals choose an n′ to report to the government, which determines their z and T :27

max
z(n),T (z(n))

∫
N
W (U(n),n) dF (n)

s.t.

∫
N
[T (z(n)) + E]dF (n) ≤ 0

n ∈ argmax
n′

u(T (z(n′)), z(n′);n) ∀n

U(n) = u(T (z(n)), z(n);n)

(18)

This general framework can capture many different applications of multidimensional optimal
taxation. For instance, one may use this framework to analyze (1) joint taxation of couples
(where K = 2, z1 and z2 represent the labor income of each individual), (2) taxation of earnings
and hours worked (where K = 2 and z1 represents earnings and z2 represents hours worked),
(3) tax-preferred consumption, such as mortgage payments in the United States (where z1
captures earnings, z2, ..., zK capture spending on various goods which are tax-preferred), or (4)
joint income and capital taxation (where K = 2, z1 represents labor income, and z2 represents
capital income).

5.2 Illustration of Method

We will use two utility functions to illustrate how to apply our theoretical results as well as
our numerical solution technique. In order to utilize the simplifications discussed in Section
4.1, both of these utility functions will be of the form of Equation 16. First, we will apply this
method to utility function 19:28

u(T, z;n) = z1 + z2 + T + n1
z1+θ1
1

1 + θ1
+ n2

z1+θ2
2

1 + θ2
(19)

with n1, n2 < 0 and θ1, θ2 > 0.

Applying our method to utility function 19 will be useful as a test case because we can
check that the solutions from our numerical methods align with the solutions which arise from
numerical methods designed to solve variational calculus problems with convexity constraints.
In particular, when utility is given by Equation 19, we can express T (·) as a function of U(n) and
∇nU(n) (see Remark 5 in Appendix B); moreover, we can replace the incentive compatibility
constraints with a convexity constraint as a result of Rochet (1987):

max
U(n)

∫
N
W (U(n),n) f(n)dn

s.t.

∫
N
[T (U(n),∇nU(n)) + E]dF (n) ≤ 0

U(n) is convex

(20)

27One may be interested in existence of a solution to the optimal taxation problem given by System 18. We
prove and discuss such an existence result in Appendix A.11, but leave this out of the main text for the sake of
brevity and streamlining.

28Note, for those familiar with optimal taxation models, the parametrization may seem a bit strange. For
instance, for the first utility function, a more natural parametrization might be to have u(T, l1, l2;m1,m2) =

m1l1+m2l2+T (m1l1,m2l2)− l1+θ1

1+θ1
− l

1+θ2
2
1+θ2

, wherem1,m2 represent labor productivities and l1, l2 represent the two

labor supply choices. A simple change of variables to z1 = m1l1 and z2 = m2l2 and redefining n1 = −m−(1+θ1)
1 ,

n2 = −m−(1+θ2)
2 shows that these parametrizations are isomorphic; we do this change of variables so as to get

our utility function into the form of Rochet (1987).
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A number of algorithms have been developed to solve variational calculus problems subject
to convexity constraints like System 20, e.g., Aguilera and Morin (2008), Oberman (2013), or
Mérigot and Oudet (2014).

The second utility function we consider is quadratic in n rather than linear in n, which takes
us outside of the realm of problems covered by the incentive compatibility results in Rochet
(1987) or McAfee and McMillan (1988):29

u(T, z;n) = z1 + z2 + T + n1
z1+θ1
1

1 + θ1
+ n2

z1+θ2
2

1 + θ2
− n21

2α
z1 −

n22
2α
z2 (21)

with scaling parameter α > 0, n1, n2 < 0, and θ1, θ2 > 0. Note, we assume that α, θ1, θ2
are homogeneous across the population. Both of these utility functions can, for example, be
interpreted as taxation of couples, where the two individuals have different disutilities over
generating income n1, n2. We can nest utility function 19 within utility function 21 if we set
α = ∞. Hence, we will just discuss how to apply our method to utility function 21. First, note:

Proposition 3. Utility function 21 (and hence utility function 19) satisfies Assumption 1 on
rectangular domains.

Proof. See Appendix A.10.

Let us now discuss how to apply the numerical method outlined in Section 4 for utility
function 21. Note that Utility function 21 satisfies the conditions of Corollary 2.1. Hence, we
need to first ensure that U(n) satisfies the envelope condition so that ∀n:

U(n) = U(n) +

∮ n

n
∇nu(T (z(n)), z(n);n) · ds = U(n) +

∮ n

n

[
z1(s)1+θ1

1+θ1
− s1

α z1(s)
z2(s)1+θ2

1+θ2
− s2

α z2(s)

]
· ds

We also need to ensure that the chosen allocation satisfies the second order condition ∀n, i.e.,
that the following is positive definite ∀n:

∇nFOC(z(n);n)[∇nz(n)]
−1 =

[
z1(n)

θ1 − n1
α 0

0 z2(n)
θ2 − n2

α

][ ∂z1
∂n1

(n) ∂z1
∂n2

(n)
∂z2
∂n1

(n) ∂z2
∂n2

(n)

]−1

(22)

But Equation 22 is positive definite if and only if it is symmetric and has all positive principal
minors. In order for ∇nFOC(z(n);n)[∇nz(n)]

−1 to be symmetric we require that:30(
zθ11 (n)− n1

α

) ∂z1
∂n2

(n) =
(
z2(n)

θ2 − n2
α

) ∂z2
∂n1

(n) (23)

29Note, this utility function is not outside the realm of functions considered by Carlier (2001); however, as
discussed in Section 3.1, the characterization of Carlier (2001) uses global (rather than local) properties of the
allocation, making them difficult to implement numerically (Carlier (2001) does not compute any numerical
solutions of multidimensional screening problems).

30By Proposition 2, we know that for utility function 21, satisfying the second order condition everywhere
ensures that ∇nu(T (z(n)), z(n);n) is a conservative vector field. This is also evident by direct computation
noting that ∇nu(T (z(n)), z(n);n) is conservative if and only if Equation 23 holds.
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And in order for Equation 22 to have all positive principal minors we must have:[
∂z1
∂n1

(n) ∂z1
∂n2

(n)
∂z2
∂n1

(n) ∂z2
∂n2

(n)

]
(24)

is a P matrix (i.e., all principal minors are positive so that ∂z1
∂n1

, ∂z2∂n2
, ∂z1∂n1

∂z2
∂n2

− ∂z1
∂n2

∂z2
∂n1

> 0).31

Hence, we solve the following numerical optimization problem:

max
z(n),U(n)

∫
N
W (U(n),n)dF (n)

s.t.

∫
N
[T (z(n)) + E]dF (n) ≤ 0

U(n) = U(n) +

∮ n

n

[
z1(s)1+θ1

1+θ1
− s1

α z1(s)
z2(s)1+θ2

1+θ2
− s2

α z2(s)

]
· ds

∂z1
∂n1

(n) > 0,
∂z2
∂n2

(n) > 0,
∂z1
∂n1

(n)
∂z2
∂n2

(n)− ∂z1
∂n2

(n)
∂z2
∂n1

(n) > 0(
zθ11 (n)− n1

α

) ∂z1
∂n2

(n) =
(
z2(n)

θ2 − n2
α

) ∂z2
∂n1

(n)

T (z(n)) = U(n)−
[
n1
z1(n)

1+θ1

1 + θ1
+ n2

z2(n)
1+θ2

1 + θ2
− n21

2α
z1(n)−

n22
2α
z2(n)

]
− z1(n)− z2(n)

(25)

Ultimately, this is a fairly straight-forward optimization problem with non-linear inequality and
equality constraints. For moderate sized grids (e.g., 40x40), this problem can be solved within a
few hours using a standard version of Matlab on a laptop.32 Once we have a candidate solution
for System 25, we simply check whether it satisfies the conditions of Theorem 2. Given that we
will solve this problem on a rectangular domain, we can appeal to Proposition 1 which ensures
that the the second order conditions holding everywhere implies that n 7→ z is a diffeomorphism.
Hence, any allocation that solves System 25 necessarily features diffeomorphic n 7→ z. As a
result, our solution method when utility is given by Equation 19 or 21 simply boils down to
solving System 25 and checking that ∀n we have u(T (z(n)), z(n);n) ≥ u(T (z(n′)), z(n′);n) ∀
n′ ∈ ∂N. Theorem 2 will then ensure that the proposed solution is incentive compatible.

5.3 Four Illustrative Simulations

Next, we work through four toy examples, which are meant to illustrate the above simulation
method rather than closely depict reality. For each of the two utility functions 19 and 21, we
consider two scenarios, which differ on the chosen distribution of types f(n) and welfare weights
ψ(n). We suppose that W (U(n),n) = ψ(n)U(n) so that the marginal social welfare gain from
increasing utility for each type n is constant. Welfare weights ψ(n) are chosen so that marginal
social welfare gain from increasing utility is decreasing with n.33 In both examples we consider
a rectangular domain of [−6,−0.5]2, θ1 = θ2 = 3 (corresponding to a compensated taxable
income elasticity of 1/3 with no taxes), α = 50, and ψ(n) = e−βU0(n) where U0(n) is optimal
utility under zero taxes. These welfare weights ψ(n) imply that the government cares more

31The fact that Equation 22 has positive principal minors (i.e., is a P matrix) if and only if Equation 24 is a
P matrix follows from the fact that the product of a diagonal matrix with positive entries and a P matrix is a
P matrix and the fact that a matrix is a P matrix if and only if its inverse is a P matrix. These are standard
results; see Theorem 3.1 of Tsatsomeros (2004) for a proof.

32Our simulation algorithm uses Matlab’s “fmincon” method to solve for the optimal schedule given the non-
linear equality and inequality constraints in system 25.

33E.g., Lockwood and Weinzierl (2016) consider such a social welfare function in an optimal taxation problem.
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about increasing consumption for low income households than high income households. For our
first set of input data, we consider uniform f(n) and β = 1, which, given the range of n we
consider, means that the marginal social welfare of giving the lowest income household a dollar
is about 3 times higher than giving the highest income household a dollar (the highest income
household earns about 2.5 times as much as the lowest income household).

For both utility functions 19 and 21, we find that the solution to System 25 is interior in the
sense that it does not feature any bunching; moreover, the solution is such that all individuals
prefer their assigned bundle to boundary bundles. Hence, by Theorem 2, we know that the
proposed solution is incentive compatible. Optimal average tax rates, −T ∗(z1,z2)

z1+z2
, for these two

utility functions are displayed in Figure 1 (recall that T ∗(z1, z2) is the optimal transfer given at
income (z1, z2) so that −T ∗(z1, z2) is the optimal tax at income (z1, z2)). Note, for both utility
functions, the tax schedule is not overly progressive because marginal social welfare of giving
$1 to the lowest income household is only about 3 times higher than giving $1 to the highest
income household; the maximum average tax rate is 4% (5% for utility function 21) and the
maximum marginal tax rate is about 13% (17% for utility function 21).

(a) Utility Function 19 (b) Utility Function 21

Figure 1: Optimal Average Tax Rates for First Set of Input Data
Note: This figure shows the optimal average tax schedule −T∗(z1,z2)

z1+z2
for utility functions 19 (panel 1a) and 21

(panel 1b). θ1 = θ2 = 3 (corresponding to a compensated taxable income elasticity of 0.33 with no taxes) and
α = 50. f(n) is uniform on a rectangular domain of [−6,−0.5]2 and ψ(n) = e−U0(n) where U0(n) is optimal
utility under zero taxes: this means the marginal social welfare of giving the lowest income household a dollar is
roughly 3 times higher than giving the highest income household a dollar for both utility functions.

For our second choice of f(n) and ψ(n), we consider normally distributed f(n) with a
small positive covariance between n1 and n2. We still assume ψ(n) = e−βU0(n) where U0(n) is
optimal utility under zero taxes, but now we pick β = 10.9 (and β = 8.1 for utility function
21), which, given the range of n we consider, means that the marginal social welfare of giving
the lowest income household a dollar is roughly 100,000 times higher than giving the highest
income household a dollar (recall the highest income household earns about 2.5 times as much
as the lowest income household).34 The optimal tax schedule from solving System 25 is shown
in Figure 2. Tax rates are much higher: for utility function 19 the maximum average tax rate
is around 9% (11% for utility function 19) and the maximum marginal tax rate is around 34%

34We set the marginal social welfare of giving the lowest income household a dollar to be many thousands of
times higher than for the highest income household so as to generate more substantial bunching in the optimal
solution. However, some bunching occurs even if the marginal social welfare of giving a dollar to the lowest
income household is only a few hundred times higher than of giving a dollar to the highest income household.
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(36% for utility function 19).

(a) Utility Function 19 (b) Utility Function 21

Figure 2: Optimal Average Tax Rates for Second Set of Input Data
Note: This figure shows the optimal average tax schedule −T∗(z1,z2)

z1+z2
for utility functions 19 (panel 2a) and 21

(panel 2b). θ1 = θ2 = 3 (corresponding to a compensated taxable income elasticity of 0.33 with no taxes) and

α = 50. f(n) is joint normal on a rectangular domain of [−6,−0.5]2 with mean matrix µ =

[
−5.5
−5.5

]
and covariance

matrix Σ =

[
5 0.5
0.5 5

]
. ψ(n) = e−βU0(n) where U0(n) is optimal utility under zero taxes with β = 10.9 for utility

function 19 and β = 8.1 for utility function 21, so that the marginal social welfare of giving the lowest income
household a dollar is roughly 100,000 times higher than giving the highest income household a dollar for both
utility functions.

For this choice of f(n), ψ(n) and both utility functions 19 and 21, we find that it is optimal
for the government to set a tax schedule which induces “bunching” at the bottom of the income
distribution, so that optimal n 7→ z is not a diffeomorphism. This can be observed by looking
at the determinant of the Jacobian for the optimal mapping n 7→ z; we see in Figure 3 that this
Jacobian determinant is 0 at the bottom of the skill distribution, implying that n 7→ z is not
invertible near the bottom of the income distribution.35 This bunching phenomenon was shown
to be robust in the context of a multiproduct monopolist by Rochet and Chone (1998) due to a
tension between participation constraints and second order conditions; our numerical examples
show that bunching also appears to be simple to generate in the context of multidimensional
optimal taxation problems which do not feature participation constraints (as we make the
standard assumption that individuals cannot leave the country). Through trial and error, it
appears bunching occurs whenever (a) welfare weights for low income households are sufficiently
large relative to high income households and/or (b) the density of types has sufficient curvature.
This seems roughly consistent with the results on bunching in unidimensional settings discussed
in Simula and Trannoy (2020).

To confirm that solutions from our method (i.e., solving System 25) are generating the
correct optimal schedule, we can check that our results for utility function 19 match with the
results computed using the method of Aguilera and Morin (2008), which utilizes the convexity
characterization of incentive compatibility from Rochet (1987).36 We show the difference in

35As discussed, our numerical procedure to compute optimal schedules when utility is given by Equation 19
or 21 enforces that n 7→ z is a diffeomorphism because second order conditions holding imply that n 7→ z is
a diffeomorphism by Proposition 1. Thus, with our numerical procedure there is never exact bunching; our
algorithm instead simply approximates bunching arbitrarily well. For instance, the Jacobian determinant is on
the order of 10−17 in Figure 3.

36The method of Aguilera and Morin (2008) essentially boils down to non-linear semidefinite programming:
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(a) Utility Function 19 (b) Utility Function 21

Figure 3: Jacobian Determinant, Solution to System 25 for Second Set of Input Data
Note: This figure shows the Jacobian determinant ∂z1

∂n1

∂z2
∂n2

− ∂z2
∂n1

∂z1
∂n2

from solving System 25 for utility functions
19 (panel 3a) and 21 (panel 3b). θ1 = θ2 = 3 (corresponding to a compensated taxable income elasticity of

0.33 with no taxes) and α = 50. f(n) is joint normal with mean matrix µ =

[
−5.5
−5.5

]
and covariance matrix

Σ =

[
5 0.5
0.5 5

]
on a rectangular domain of [−6,−0.5]2 and set ψ(n) = e−βU0(n) where U0(n) is optimal utility

under zero taxes with β = 10.9 for utility function 19 and β = 8.1 for utility function 21, so that the marginal
social welfare of giving the lowest income household a dollar is roughly 100,000 times higher than giving the
highest income household a dollar for both utility functions.

average tax rates between our method and the method of Aguilera and Morin (2008) in Figure
9 in Appendix C.3; they are very close and the small differences between the solutions shrink
with the grid size, suggesting they are simply numerical noise.

5.4 A More Realistic Example: Optimal Taxation of Couples

The examples in Section 5.3 are not intended to be realistic: they are merely meant to showcase
how to apply our theoretical results from Section 3 and how to use our novel numerical method
to solve multidimensional screening problems. Next, we show how these methods can be applied
to a somewhat more realistic, calibrated setting: optimal taxation of couples. Optimal taxation
of couples has been studied in the public finance literature (e.g., Kleven, Kreiner and Saez
(2009), Spiritus et al. (2022), or Krasikov and Golosov (2022)). Our contribution here is to (1)
allow the problem to be fully multidimensional (e.g., Kleven, Kreiner and Saez (2009) assume
that women’s labor supply is dichotomous and that all women have the same productivity) and
(2) to allow generally for bunching (e.g., Spiritus et al. (2022) and Krasikov and Golosov (2022)
assume there is no bunching so that the tax schedule can be found using first order methods).
We use income data from the Current Population Survey in 2019 and suppose utility is again
quadratic in type n:

u(T, z;n) = log(z1 + z2 + T ) + n1
z1+θ1
1

1 + θ1
+ n2

z1+θ2
2

1 + θ2
− n21

2α1
z1 −

n22
2α2

z2 (26)

We assume utility over consumption, z1+z2+T , is log(z1+z2+T ), consistent with the findings
of Chetty (2006) on the curvature of utility over consumption. The parameters n1, n2 < 0
capture differences in disutility of producing income: larger (i.e., less negative) values capture

solve System 20 by finding the utility function U∗(n) which numerically optimizes welfare subject to the budget
constraint and the convexity constraint (i.e., the discrete Hessian matrix of U∗(n) is positive semi-definite).
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lower disutility of labor (loosely, we can think of n1, n2 as being related to productivity as more
productive individuals have to exert less effort to generate a given level of income). Note that
this utility function is neither linear in consumption nor linear in type, which, to the best of my
knowledge, takes us outside of the realm of any previous results on incentive compatibility.37

Disutility of generating income is given by: D(z1, z2;n1, n2) = n1
z
1+θ1
1
1+θ1

+n2
z
1+θ2
2
1+θ2

− n2
1

2α1
z1−

n2
2

2α2
z2.

Hence, the utility function is augmented from the standard iso-elastic form to include additional
terms which capture positive marginal disutility of labor supply even when labor supply is zero
(i.e., ∂D(z1, z2;n1, n2)/∂zi|z1=z2=0 ̸= 0 for i = 1, 2). This leads to some individuals optimally
choosing to not work, which is an empirically relevant modification. The distribution of types
f(n1, n2) is calibrated to match the empirical joint income distribution of couples.38 We choose
θ1, θ2, α1, and α2 to match four moments: the compensated taxable income elasticity for men
(0.2, taken from Blomquist and Selin (2010)), the compensated taxable income elasticity for
women (1, also taken from Blomquist and Selin (2010)), the percentage of men who do not
work (13.5%, from CPS data), and the fraction of women who do not work (20%, from CPS
data).39 We assume that the government has no exogenous expenditure requirements. Finally,
we suppose W (U(n),n) = ψ(n)U(n) with ψ(n) decreasing in n so that the government desires
to redistribute to those with high disutilities of generating income. For purposes of illustration,
we choose welfare weights ψ(n) so that ψ(n) is ≈ 10,000 times higher for households earning
$1 million per year than for households who earn $0 per year. Figure 4 shows marginal tax
rates over the income distribution for males and females conditional on a given level of male (or
female) income.

(a) Marginal Tax Schedules for Males (b) Marginal Tax Schedules for Females

Figure 4: Optimal Marginal Tax Schedules for Couples
Note: This figure shows the optimal marginal tax rates for males and females conditional on spousal earnings. We
assume utility is given by Equation 26. f(n) is calibrated to match the joint income distribution from the CPS
and θ1, θ2, α1, α2 are chosen to match four moments: the compensated taxable income elasticity for men (0.2,
taken from Blomquist and Selin (2010)), the compensated taxable income elasticity for women (1, also taken from
Blomquist and Selin (2010)), the percentage of men who do not work (13.5%, from CPS data), and the fraction of
women who do not work (20%, from CPS data). The social welfare function is given by W (U(n),n) = ψ(n)U(n)
with welfare weights ψ(n) chosen so that ψ(n) is ≈ 10, 000 times higher for the lowest income household than
for the highest income household.

37Utility function 26 satisfies Assumption 1 as the Jacobian matrix of n 7→ ∇zu(T,z;n)
uT (T,z;n)

equals:

(z1 + z2 + T )

[
zθ11 − n1

α
0

0 zθ22 − n2
α

]
which is a P matrix given that (z1 + z2 + T ), z1, z2 > 0 and n1, n2 < 0.

38This is similar to Saez (2001) who calibrates a unidimensional f(n) to match the empirical income distribution.
39We provide more detail about the calibration in Appendix C.
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As far as marginal tax rates, top earning females are typically taxed at a lower marginal tax
rate than top earning males because females have higher elasticities, on average, than men. For
example, the optimal marginal tax rate for women earning $500,000 per year whose husband
does not work is around 21% whereas the optimal marginal tax rate for men earning $500,000
per year whose wife does not work is around 31%. We find that at most incomes (z1, z2)

the tax schedule features negative jointness: ∂2T (z1,z2)
∂z1∂z2

< 0, but there are also portions of the
distribution where this is not the case.

We find that optimal average tax rates are around 30-40% for relatively high income couples
(i.e., those with combined income over $200,000 per year).40 This is combined with large
transfers for low income couples (i.e., those making combined incomes less than $20,000 per
year): we find it is optimal to transfer around $50,000 per year to these households. This
should be interpreted as government provision of public goods as well as direct transfers via
the tax system. This large benefit is fully taxed away roughly by the point a household earns
$70,000 per year. The optimal solution features substantial bunching at the bottom of the
distribution whereby many households do not work at all. This can be seen in Figure 5, which
shows total household income across the type distribution (note we plot household income
against (− log(−n1),− log(−n2)) to compress the type distribution for readability); there are a
substantial number of households with a combined income of $0 (which means both members
do not work as income cannot be negative).41

Figure 5: Optimal Total Household Income Across the Type Distribution
Note: This figure shows the optimal household income by type, assuming utility is given by Equation 26. We
plot household income against (− log(−n1),− log(−n2)) to compress the type distribution for readability. f(n)
is calibrated to match the joint income distribution from the CPS and θ1, θ2, α1, α2 are chosen to match four
moments: the compensated taxable income elasticity for men (0.2, taken from Blomquist and Selin (2010)), the
compensated taxable income elasticity for women (1, also taken from Blomquist and Selin (2010)), the percentage
of men who do not work (13.5%, from CPS data), and the fraction of women who do not work (20%, from CPS
data). The social welfare function is given by W (U(n),n) = ψ(n)U(n) with welfare weights ψ(n) chosen so that
ψ(n) is ≈ 10, 000 times higher for the lowest income household than for the highest income household.

Ultimately, we hope that this basic simulation using CPS data not only highlights the meth-
ods developed in this paper via a somewhat realistic application, but also can be used as a

40The average tax rate surface (analogous to Figures 1 and 2) is shown in Appendix C.3.
41Figure 8 in Appendix C shows the corresponding Jacobian determinant for this simulation.
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starting point towards even more involved work on multidimensional taxation.

6 Conclusion

This paper has derived necessary conditions and sufficient conditions for incentive compatibility
in the context of a general multidimensional screening problem assuming a generalized single
crossing property. We then used these results to derive a novel numerical method to solve mul-
tidimensional screening problems, illustrating the method with a number of numerical examples
in the context of optimal multidimensional taxation, finding that bunching in the optimal allo-
cation appears to be relatively easy to generate. We apply this method to data from the CPS
to better understand optimal couples taxation, finding that it is optimal to have significant
bunching in the form of unemployment at the bottom of the income distribution.

Looking forward, we believe that results in this paper can be used to better understand
other multidimensional screening problems in the areas of, for example, non-linear pricing or
public procurement. We think our analysis of optimal multidimensional taxation suggests that
bunching behavior is perhaps more relevant for optimal taxation than previously believed. Thus,
a more thorough investigation into importance of bunching for multidimensional settings is an
important area for further work.
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A Proofs Appendix

A.1 Proof of Theorem 1

(1) We know that for any incentive compatible allocation, U(n) is equal to:

U(n) ≡ u(T (z(n)), z(n);n) = max
n′

u(T (z(n′)), z(n′);n)

Because u(T (z(n′)), z(n′);n) is differentiable in n ∀n′, the envelope theorem (Corollary 1, Mil-
grom and Segal (2016)) implies that the following envelope condition holds for all paths between
n1 and n2:

42

U(n1)− U(n2) =

∮ n1

n2

∇nu(T (z(n)), z(n);n) · dn

(2) If n 7→ z is a local diffeomorphism and T (z(n)) is differentiable at a point n, then Lemma 1
tells us that the tax schedule T (z) is twice continuously differentiable at z(n) so that Equation
8 holds. Under any incentive compatible allocation, we know that u(T (z), z;n) must be concave
in z around z(n).43 Hence, ∇zFOC(z(n);n) must be negative semi-definite. Equation 8 then
implies that for any incentive compatible allocation, ∇nFOC(z(n);n)[∇nz(n)]

−1 is positive
semi-definite. In order to show that ∇nFOC(z(n);n)[∇nz(n)]

−1 is positive definite, we simply
need to show that det[∇nFOC(z(n);n)[∇nz(n)]

−1] ̸= 0.

We know that det([∇nz(n)]
−1) ̸= 0 because n 7→ z is a local diffeomorphism. We claim that

det(∇nFOC(z(n);n)) ̸= 0 by Assumption 1. Using Equation 6, we have:

∇nFOC(z(n);n) = ∇n (uT (T (z(n)), z(n);n))∇zT (z(n)) +∇n (∇zu(T (z(n)), z(n);n))

Using the fact that uT (T (z(n)), z(n);n)∇zT (z(n)) +∇zu(T (z(n)), z(n);n) = 0, it is straight-
forward to verify that:

∇nFOC(z(n);n) = uT (T (z(n)), z(n);n)

[
∇n

(
∇zu(T (z(n)), z(n);n)

uT (T (z(n)), z(n);n)

)]
(27)

But

∇n

(
∇zu(T (z(n)), z(n);n)

uT (T (z(n)), z(n);n)

)
is simply the Jacobian of the mapping n 7→ ∇zu(T,z;n)

uT (T,z;n)

∣∣
T=T (z(n)),z=z(n)

, which is a diffeomorphism

by Assumption 1. Hence:

det

[
∇n

(
∇zu(T (z(n)), z(n);n)

uT (T (z(n)), z(n);n)

)]
̸= 0

because the determinant of the Jacobian of a diffeomorphism never vanishes. This implies then
that:

det [∇nFOC(z(n);n)] ̸= 0

42To apply Corollary 1 from Milgrom and Segal (2016) we also need that the gradient ∇nu(T (z(n
′)), z(n′);n)

is bounded ∀n,n′. But this holds because we assume the domain N is compact and that the set of all assigned
(T (z(n)), z(n)) is compact. Because u(T (z(n′)), z(n′);n) is assumed continuously differentiable in n, we have that
∇nu(T (z(n

′)), z(n′);n) is a continuous function on a compact domain, which implies its image is also compact
and therefore bounded.

43If not, u(T (z), z;n) is increasing in the direction of some z, which means u(T (z(n′)), z(n′);n) is increasing
in the direction of some n′ by the fact that n 7→ z is a local diffeomorphism.

30



by Equation 27 because uT (T (z(n)), z(n);n) > 0. But then we know that:

det[∇nFOC(z(n);n)[∇nz(n)]
−1] = det [∇nFOC(z(n);n)] det([∇nz(n)]

−1) ̸= 0

(3) Suppose that an allocation is such that two points n and n′ are mapped to the same z at
which n 7→ z is a local diffeomorphism and T (z(n)) is differentiable. Hence, the FOC must be
satisfied for both n and n′:

uT (T (z(n)), z(n);n)∇zT (z(n)) +∇zu(T (z(n)), z(n);n) = 0

uT (T (z(n
′)), z(n′);n′)∇zT (z(n

′)) +∇zu(T (z(n
′)), z(n′);n′) = 0

But Assumption 1 then implies that ∇zT (z(n)) ̸= ∇zT (z(n
′)), which means that the proposed

allocation requires two individuals n,n′ with z(n) = z(n′) to face different marginal transfer
rates. Clearly, this cannot be achieved with any T (z(n)), implying that the allocation is not
incentive compatible.

A.2 Proof of Corollary 1.1

If n 7→ z is a local diffeomorphism and T (z(n)) is differentiable in z at two points n and n′,
then we know that the tax schedule is twice continuously differentiable in z there by Lemma 1
so that Equation 8 holds. Assumption 1 tells us that det [∇nFOC(z(n);n)] never changes sign
(see discussion in point (2) of Appendix A.1). Hence, if det[∇nz(n)] has different signs at n and
n′, then we know det[∇nFOC(z(n);n)[∇nz(n)]

−1] has different signs at n and n′, which means
∇nFOC(z(n);n)[∇nz(n)]

−1 cannot be positive definite at both n and n′. Applying Theorem
1 then yields the desired conclusion.

A.3 Proof of Theorem 2

First, we show that if n 7→ z is a local diffeomorphism and T (z) is differentiable everywhere,
then the envelope condition 4 holding, n 7→ z being injective, and all types n satisfying
u(T (z(n)), z(n);n) ≥ u(T (z(n′)), z(n′);n) ∀n′ ∈ ∂N is sufficient for incentive compatibility.

Because n 7→ z is a local diffeomorphism and T (z) is differentiable everywhere, all individuals
n must have:

[uT (T (z(n)), z(n);n)∇zT (z(n)) +∇zu(T (z(n)), z(n);n)]∇nz(n) = 0

Because n 7→ z is injective, Assumption 1 tells us that for all n,n′:

uT (T (z(n
′)), z(n′);n)∇zT (z(n

′)) +∇zu(T (z(n
′)), z(n′);n) ̸= 0

Because n 7→ z is a local diffeomorphism, we also know that:44[
uT (T (z(n

′)), z(n′);n)∇zT (z(n
′)) +∇zu(T (z(n

′)), z(n′);n)
]
∇nz(n

′) ̸= 0

Hence, we know that type n has no other critical points (T (z(n′)), z(n′)). Because u(T (z(n′)), z(n′);n)
is a continuous function of n′ and N is compact, the global maximum for type n can occur only
at (T (z(n)), z(n)) or on the boundary ∂N. By assumption, all n satisfy: u(T (z(n)), z(n);n) ≥
u(T (z(n′)), z(n′);n) ∀n′ ∈ ∂N. Hence, the global maximum must occur at (T (z(n)), z(n)).

44Otherwise, ∇nz(n
′) would have a non-zero eigenvector, which would mean that it is not invertible, violating

the fact that the Jacobian matrix of a local diffeomorphism is everywhere invertible.
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Next, we show that if n 7→ z is a local diffeomorphism and T (z) is differentiable every-
where, then the envelope condition 4 holding, n 7→ z being injective, and all types n satisfying
u(T (z(n)), z(n);n) ≥ u(T (z(n′)), z(n′);n) for n′ ∈ ∂N is necessary for incentive compatibility.
Corollary 1.2 shows that if n 7→ z is a local diffeomorphism and T (z) is differentiable every-
where, then the envelope condition holding and n 7→ z being injective are both necessary for
incentive compatibility. All types n satisfying u(T (z(n)), z(n);n) ≥ u(T (z(n′)), z(n′);n) for
n′ ∈ ∂N is definitionally necessary for incentive compatibility, which proves necessity of these
conditions.

Finally, if we have a sequence of (Tj(z(n)), zj(n)) that all satisfy the conditions of Theorem
2 (and hence are incentive compatible), we know that ∀n,n′:

u(Tj(zj(n)), zj(n);n) ≥ u(Tj(zj(n
′)), zj(n

′);n)

Taking limits and passing through the continuous functions u(T, z;n) and T (z), we see that:45

u(T (z(n)), z(n);n) ≥ u(T (z(n′)), z(n′);n)

A.4 Incentive Compatibility when dim(N) ̸= dim(Z)

Proposition 4. Suppose dim(N) > dim(Z) and suppose we can split the domain N into some
N(1) and N(2) with dim

(
N(1)

)
= dim(Z) and, for each n(2) ∈ N(2), Assumption 1 holds for

n(1) ∈ N(1), i.e.:

n(1) 7→
∇zu

(
T, z;n(1),n(2)

)
uT
(
T, z;n(1),n(2)

)
is a diffeomorphism ∀n(2).

In order for this allocation to be incentive compatible: (1) the following envelope condition must

hold for all paths between n(1)′ and n(1) and all n(2):

U
(
n(1),n(2)

)
−U

(
n(1)′ ,n(2)

)
=

∮ n(1)

n(1)′
∇n(1)u

(
T
(
z
(
n(1),n(2)

))
, z
(
n(1),n(2)

)
;n(1),n(2)

)
·dn(1) (28)

(2) for all (n(1),n(2)) such that the allocation n(1) 7→ z is a local diffeomorphism at some
n(1) and T (z) is differentiable, ∇n(1)FOC

(
z
(
n(1),n(2)

)
;n(1),n(2)

)
[∇n(1)z

(
n(1),n(2)

)
]−1 must

be positive definite, (3) for all (n(1),n(2)) and (n(1)′ ,n(2)) such that the allocation n(1) 7→ z
is a local diffeomorphism and T (z) is differentiable we must have z(n(1),n(2)) ̸= z(n(1)′ ,n(2)).
Similarly, if dim(N) < dim(Z), then if there exists a subset Z̃ ⊂ Z with dim(N) = dim(Z̃) such
that the conditions of Assumption 1 and Theorem 1 hold after replacing z ∈ Z with z̃ ∈ Z̃, then
the allocation is not incentive compatible.

Proof. When dim(N) > dim(Z), the above follows immediately from Theorem 1: if any of the
stated conditions fail to hold, then some individual

(
n(1),n(2)

)
prefers a bundle chosen by some

type
(
n(1)′ ,n(2)

)
.

When dim(N) < dim(Z), we know that n 7→ z definitionally cannot be diffeomorphic, but
n 7→ z can be diffeomorphic if we just restrict the set of z’s to an appropriate subset, allowing
us to again apply Theorem 1.

45Note, we require the limit to be uniform so that we can apply the uniform limit theorem to ensure that
T (z(n)) = limj→∞ Tj(z(n)) is continuous.
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Proposition 5. Suppose dim(N) > dim(Z), but suppose we can split the domain N into some
N(1) and N(2) with dim

(
N(1)

)
= dim(Z) such that for each n(2) ∈ N(2), Assumption 1 holds

after replacing n with n(1) (as in Proposition 5). Suppose we consider an allocation such that
n(1) 7→ z is a local diffeomorphism ∀n(2) and T (z) is differentiable. Then sufficient conditions for
incentive compatibility are: the envelope condition 28 holds ∀ (n(1),n(2)), and n(1) 7→ z is bijec-

tive ∀n(2), and u
(
T
(
z
(
n(1),n(2)

))
, z
(
n(1),n(2)

)
;n(1),n(2)

)
≥ u

(
T
(
z
(
n(1)′ ,n(2)

))
, z
(
n(1)′ ,n(2)

)
;n(1),n(2)

)
∀n(1)′ ∈ ∂N(1) and ∀ (n(1),n(2)). Similarly, if dim(N) < dim(Z), then if there exists a subspace
Z̃ ∈ Z with dim(N) = dim(Z̃) such that the conditions of Assumption 1 and Theorem 2 hold
after replacing z ∈ Z with z̃ ∈ Z̃, then the allocation is incentive compatible.

Proof. When dim(N) > dim(Z), under the conditions listed above Theorem 2 tells us that
each type

(
n(1),n(2)

)
prefers his/her assigned bundle to the bundles assigned to all other types

types
(
n(1)′ ,n(2)

)
. Moreover, some type

(
n(1)′ ,n(2)

)
chooses every z that is chosen by any(

n(1)′ ,n(2)′
)
because we now require that n(1) 7→ z is bijective ∀n(2).46 Thus, we know that

each type
(
n(1),n(2)

)
prefers his/her assigned bundle to the bundles assigned to all other types

types
(
n(1)′ ,n(2)′

)
.

When dim(N) < dim(Z), we know that n 7→ z definitionally cannot be diffeomorphic, but
n 7→ z can be diffeomorphic if we just restrict the set of z’s to an appropriate subset, which
allows us to again just apply Theorem 2.

A.5 Proof of Remark 3

First, suppose T (z) is differentiable, n 7→ z is locally diffeomorphic (i.e., monotonic), U(n)
satisfies the envelope condition, and z′(n) > 0. When T (z) is differentiable, n 7→ z is locally
diffeomorphic (i.e., monotonic), and U(n) satisfies the envelope condition, the proof to Theorem
2 shows that each individual has a unique critical point for their utility maximization problem.
But we also know that all individuals’ second order conditions hold strictly when z′(n) > 0 (see
footnote 13), implying the unique critical point is a local maximum. The mean value theorem
implies that a local maximum which is the unique critical point of a real differentiable function
is a global maximum. Hence, all individuals prefer their assigned bundle to boundary bundles.

On the other hand, if all individuals prefer their bundle to boundary bundles, we know that
their second order condition holds strictly (see Remark 2), which in turn implies that z′(n) > 0
(see footnote 13).

46Hence, in order to apply Theorem 2 to settings wherein dim(N) > dim(Z), we require that for every n2, we
have that n(1) 7→ z is surjective onto the set of chosen incomes. While this limits the applicability of the result
to some degree, it may often be possible to artificially enlarge the domain N so that this condition holds.
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A.6 Proof that 10 is positive definite ⇐⇒ 11 is positive definite

We will show that:

V [∇nz]
−1 ≡

vz1(z) · · · 0
...

0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK


−1

is positive definite

⇐⇒ V∇nz ≡

vz1(z) · · · 0
...

0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK

 is positive definite

We first prove that V [∇nz]
−1 has all principal minors positive (i.e., is a P matrix) if and only

if V∇nz has all principal minors positive. Then we will prove that V [∇nz]
−1 is symmetric if

and only if V∇nz is symmetric. First, note that:vz1(z) · · · 0
...

0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK


−1

is a P matrix (i.e., has positive principal minors) if and only if:
∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK


−1

is a P matrix. The if statement follows immediately from the fact that the product of a P
matrix and a diagonal matrix with positive entries is a P matrix.47 The only if statement
follows immediately as well because:

∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK


−1

=

vz1(z) · · · 0
...

0 · · · vzK (z)


−1

vz1(z) · · · 0

...
0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK


−1


Next, we use the fact that:
∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK

 is a P matrix ⇐⇒


∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK


−1

is a P matrix

Hence we have: vz1(z) · · · 0
...

0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK


−1

is a P matrix

⇐⇒

vz1(z) · · · 0
...

0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK

 is a P matrix

47This is a standard result; see Theorem 3.1 of Tsatsomeros (2004) for a proof.
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Finally, we need to show that:

V [∇nz]
−1 ≡

vz1(z) · · · 0
...

0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK


−1

is symmetric

⇐⇒ V∇nz ≡

vz1(z) · · · 0
...

0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK

 is symmetric

This follows essentially because the matrix V is symmetric. Lemma 3 in Appendix A.9 shows
that the product V A of two invertible matrices V and A with V symmetric is symmetric if and
only if V A−1 is symmetric. Hence, we know that:vz1(z) · · · 0

...
0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK


−1

is symmetric

⇐⇒

vz1(z) · · · 0
...

0 · · · vzK (z)




∂z1
∂n1

· · · ∂z1
∂nK

...
∂zK
∂n1

· · · ∂zK
∂nK

 is symmetric

This proves the claim.

A.7 Proof of Lemma 2

By assumption, U(n) = u(T (z(n)), z(n);n) is differentiable in n. Because n 7→ z is a local
diffeomorphism, we can express n locally as a function of z rather than the reverse to infer that
U(n(z)) = u(T (z), z;n(z)) is differentiable in z. Because u(T, z;n) is continuously differentiable
in all of its arguments and uT (T, z;n) > 0, the implicit function theorem tells us that T (z)
is differentiable as a function of z. As a result, we can differentiate both sides of U(n) =
u(T (z(n)), z(n);n) to yield:

DnU(n) = ∇nu(T (z(n)), z(n);n)+{uT (T (z(n)), z(n);n)∇zT (z(n)) +∇zu(T (z(n)), z(n);n)}∇nz(n)

By the envelope condition 4, we then know that:

{uT (T (z(n)), z(n);n)∇zT (z(n)) +∇zu(T (z(n)), z(n);n)}∇nz(n) = 0

Given that ∇nz(n) is invertible (by the local diffeomorphism assumption), the following first
order condition must also hold for each individual n:

uT (T (z(n)), z(n);n)∇zT (z(n)) +∇zu(T (z(n)), z(n);n) = 0

Rewriting n as a function of z rather than the reverse, the above first order condition defines:

∇zT (z) = −∇zu(T (z), z;n(z))

uT (T (z), z;n(z))

The right hand side is continuous in z, which implies that∇zT (z) is continuous in z. As n(z) and
T (z) are both continuously differentiable in z, we must have that ∇zT (z) is also continuously
differentiable, which means that T (z) is twice continuously differentiable.
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A.8 Proof of Proposition 1

Note that when utility is given by u(T, z;n) = u(0)(T, z) +
∑K

i u(i)(zi, ni), we have:

∇nFOC(z(n);n)[∇nz(n)]
−1 =


∂2u(1)(z1,n1)

∂z1∂n1
0

. . .

0 ∂2u(K)(zK ,nK)
∂zK∂nK




∂z1
∂n1

(n) ∂z1
∂n2

(n) · · ·
∂z2
∂n1

(n) ∂z2
∂n2

(n) · · ·
...

...
. . .


−1

(29)

Now, Equation 29 has positive principal minors if and only if:
∂z1
∂n1

(n) ∂z1
∂n2

(n) · · ·
∂z2
∂n1

(n) ∂z2
∂n2

(n) · · ·
...

...
. . .

 (30)

is a P matix (i.e., all principal minors are positive). This if and only if follows because the
product of a diagonal matrix with positive entries and a P matrix is a P matrix and the fact
that a matrix is a P matrix if and only if its inverse is a P matrix. These are standard results;
see Theorem 3.1 of Tsatsomeros (2004) for a proof.

Hence, if ∇nFOC(z(n);n)[∇nz(n)]
−1 is positive definite (and hence has positive principal mi-

nors), we know that Equation 30 is a P matrix. On a rectangular domain, Remark 1 then
implies that n 7→ z is a diffeomorphism.

A.9 Proof of Proposition 2

In order for ∇nu(T (z(n)), z(n);n) to be a conservative vector field, we must have that cross
partials are equal, i.e., that the Jacobian of this vector field is symmetric. When u(T, z;n) =
u(0)(T, z) +

∑K
i u(i)(zi, ni), the Jacobian, J , is given by:

J(∇nu(T (z(n)), z(n);n)) =


∂2u(1)(z1,n1)

∂z1∂n1
0

. . .

0 ∂2u(K)(zK ,nK)
∂zK∂nK




∂z1
∂n1

(n) ∂z1
∂n2

(n) · · ·
∂z2
∂n1

(n) ∂z2
∂n2

(n) · · ·
...

...
. . .

 (31)

Now, if ∇nFOC(z(n);n)[∇nz(n)]
−1 is positive definite, we know that

∇nFOC(z(n);n)[∇nz(n)]
−1 =


∂2u(1)(z1,n1)

∂z1∂n1
0

. . .

0 ∂2u(K)(zK ,nK)
∂zK∂nK




∂z1
∂n1

(n) ∂z1
∂n2

(n) · · ·
∂z2
∂n1

(n) ∂z2
∂n2

(n) · · ·
...

...
. . .


−1

(32)

is symmetric. But Equation 32 is symmetric if and only if Equation 31 is symmetric by the
following Lemma:

Lemma 3. The product V A of two invertible matrices V and A with V symmetric is symmetric
if and only if V A−1 is symmetric.
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Proof. Let I be the identity matrix and T represent the transpose operator. Symmetry of
V A and V means that V A = [V A]T = AT V T = AT V (the last equality follows because V is
symmetric. But then we have:

V A = [V A]T ⇐⇒ V A = AT V ⇐⇒ [AT ]−1V = V A−1 ⇐⇒ [A−1]T V = V A−1 ⇐⇒ [V A−1]T = V A−1

Because the matrix 
∂2u(1)(z1,n1)

∂z1∂n1
0

. . .

0 ∂2u(K)(zK ,nK)
∂zK∂nK


is symmetric, Lemma 3 implies that if Equation 32 is symmetric, then so is Equation 31.
Hence, if ∇nFOC(z(n);n)[∇nz(n)]

−1 is positive definite and utility is of the form u(T, z;n) =
u(0)(T, z) +

∑K
i u(i)(zi, ni), then ∇nu(T (z(n)), z(n);n) is a conservative vector field.

A.10 Proof of Proposition 3

The Jacobian matrix of n 7→ ∇zu(T,z;n)
uT (T,z;n) equals:[

zθ11 − n1
α 0

0 zθ22 − n2
α

]
which is a P matrix as long as z1, z2 > 0 and n1, n2 < 0. Hence, the claim follows by Remark 1.

A.11 Existence of a Solution to Problem 18

In this Appendix, we prove the following existence result for the optimal multidimensional
taxation problem:

Proposition 6. The equations ∇nU(n) = ∇nu(T (z(n)), z(n);n) and U(n) = u(T (z(n)), z(n);n)
define an a.e. correspondence (U(n),∇nU(n)) 7→ (T (z(n)), z(n)). There exists a solution
to Problem 18 if for a.e. n and any selection from the correspondence (U(n),∇nU(n)) 7→
(T (z(n)), z(n)):

−T (U(n),∇nU(n)) → −∞ as ||∇nU(n)|| → ∞ and/or U(n) → ∞

and
−T (U(n),∇nU(n)) ̸→ ∞ as U(n) → −∞

and
W (U(n),n) → −∞ as U(n) → −∞

Proof. We are going to argue that any maximizing sequence of functions U∗
j (n) which satisfy

the budget constraint must be bounded. First, let us recall the definition of the H1 norm:

|U |H1 =

∫
N
U2(n) + ||∇nU(n)||2dn

Next, note that as |U |H1 → ∞ we have either (1) U(n) → ∞ on a positive measure set, and/or
(2) U(n) → −∞ on a positive measure set, and/or (3) ||∇nU(n)|| → ∞ on a positive measure
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set. If U(n) → ∞ and/or ||∇nU(n)|| → ∞ on a positive measure set, we know that the budget
constraint must not be satisfied. Defining:

BC ≡
∫
N
{−T (U(n),∇nU(n))− E}f(n)dn

we know that, under the stated assumptions, BC → −∞ as U(n) → ∞ or ||∇nU(n)|| → ∞ on
a positive measure set. Note, this holds true even if we also have U(n) → −∞ on a positive
measure set because:

−T (U(n),∇nU(n)) → −∞ as ||∇nU(n)|| → ∞ and/or U(n) → ∞

and
−T (U(n),∇nU(n)) ̸→ ∞ as U(n) → −∞

Moreover, if neither U(n) → ∞ or ||∇nU(n)|| → ∞ on a positive measure set, yet |U |H1 →
∞, we know we must have U → −∞ on a positive measure set. But then by assumption,∫
NW (U(n),n) f(n)dn → −∞, which clearly cannot be optimal as the government can always
choose to set taxes equal to zero with T (z) = 0, which will yield welfare greater than −∞.

Hence, any maximizing sequence U∗
j (n) of

∫
NW (U(n),n)) f(n)dn that satisfies the budget

constraint must be bounded. The rest of the proof is standard because the Sobolev space
H1(N) is closed (and the subspaces of functions which satisfy the global incentive compatibility
constraints and the budget constraint are both closed, implying the intersection of these spaces
is also closed) and the functional

∫
NW (U,n)f(n)dn is continuous. Essentially, we extract a

weakly convergent subsequence from the bounded maximizing sequence and use the continuity
of the functional to pass the limit inside to show that the functional evaluated at the limit
of the minimizing sequence is at least as small as the infimum, proving the claim (see, e.g.,
Kinderlehrer and Stampacchia (1980) or Ito (2020), Chapter 3.6).

Proposition 6, while similar in flavor to results in Rochet and Chone (1998) and Basov
(2001), is not exactly the same because the functional to maximize, W (U,n), is not coercive in
the H1 norm. Hence, we use coercivity of the budget constraint to show that any maximizing
sequence will be bounded; the rest of the proof is identical to standard existence proofs, e.g.,
Kinderlehrer and Stampacchia (1980).

Remark 4. As an example application of Proposition 6, suppose that N ⊆ (−∞, 0)K and

u(T, z;n) = log

(
K∑
i=1

zi + T

)
+

K∑
i=1

ni
z1+θi
i

1 + θi

with z1, z2, ..., zK ≥ 0. Then we have:48

−T (U,∇nU) =
K∑
i=1

(
(1 + θi)

∂U

∂ni

) 1
1+θi

−exp

(
U −

K∑
i=1

ni
∂U

∂ni

)
→ −∞ as ||∇nU || → ∞ or U → ∞

48The limit uses the fact that ∂u
∂ni

> 0 ∀i.
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And note that we have −T (U,∇nU) →
∑K

i=1

(
(1 + θi)

∂U
∂ni

) 1
1+θi as U → −∞. If we have:∫

N
W (U(n),n)) dF (n) =

∫
N
ψ(n)U(n)dF (n)

then
∫
NW (U(n),n)) dF (n) → −∞ as U → −∞, so that the conditions for Proposition 6 are

satisfied.

A.12 No Jumping for Utility Function 19

We prove the following slightly more general result which implies no jumping in the two dimen-
sional case when utility is given by Equation 19:

Proposition 7. Suppose that utility is given by:

u(T, z;n) =

K∑
i=1

zi(n) + T + n1
z1+θ1
1

1 + θ1
+ n2

z1+θ2
2

1 + θ2
+ ...+ nK

z1+θK
K

1 + θK
(33)

with θi > 0∀i. Further suppose that N is a convex subset of RK . Then the optimal tax schedule
yields a continuous allocation z∗(n).

Proof. We begin by stating the following Lemma (adapted from Rochet (1987)):

Lemma 4. If N is a convex subset of Rk and utility takes the form:

u(T, z;n) = y(z) + T + n · v(z)

then z∗(n) is incentive compatible if and only if U∗(n) is a convex (and hence continuous)
function with:

∇nU
∗(n) = v(z∗(n)) (34)

holding a.e. n.

Now, suppose that z∗(n) has a discontinuity. By injectivity of the function:

∇nU(n) =

[
z1+θ1
1

1 + θ1
,
z1+θ2
2

1 + θ2
, ...,

z1+θK
K

1 + θK

]

we know that this implies that ∇nU
∗(n) also has a discontinuity. We will show that it can never

be optimal to have a discontinuous ∇nU
∗(n). Towards a contradiction, suppose that optimal

U∗(n) has a discontinuity over a surface Σ with normal vector p pointing from the arbitrarily
chosen ′′−′′ side into the other ′′+′′ side. Let ∇+

nU
∗(n) denote the gradient on the “+” side and

∇−
nU

∗(n) denote the gradient on the “-” side.

Next, we can actually transform our problem into a classical calculus of variations problem by

writing zi(n) = [(1 + θi)
∂U
∂ni

(n)]
1

1+θi and
∑K

i=1 zi(n) + T (z(n)) = U(n) − n · ∇nU(n). Turning
maximization problem 43 into a Lagrangian by adjoining the budget constraint with Lagrange
multiplier λ, expressing z(n) and T (z(n)) as functions of U and ∇nU (omitting arguments of
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U(n) and∇nU(n)), and using Lemma 4 to convert the global incentive compatibility constraints
into a convexity constraint, we can write the government’s maximization problem as:

max
U

∫
N
L(n, U,∇nU) =

∫
N

{
W (U,n) + λ

[
K∑
i=1

[
(1 + θi)

∂U

∂ni

] 1
1+θi

− (U − n · ∇nU)− E

]}
f(n)

s.t. U is convex

To simplify ideas, first consider the case when U∗(n) happens to be strictly convex. In
this case, U∗(n) solves the relaxed problem ignoring the convexity constraint, which implies
that this function is a stationary point of this functional within the class of all piece-wise
smooth functions. Hence, if this function has a discontinuity in its gradient (i.e., a kink) then it
must satisfy the classical Weierstrass-Erdman corner condition along the discontinuity surface
(omitting the first two arguments of L):49[

L3(n, U
∗,∇−

nU
∗)− L3(n, U

∗,∇+
nU

∗)
]
·
[
∇+

nU
∗ −∇−

nU
∗] = 0 (35)

However, note that:

L3(n, U,∇nU) = λf(n)



(
(1 + θ1)

∂U
∂n1

) 1
1+θ1

−1
+ n1(

(1 + θ2)
∂U
∂n2

) 1
1+θ2

−1
+ n2

...(
(1 + θK) ∂U

∂nK

) 1
1+θK

−1
+ nK



But this implies L3(n, U,∇nU) is strictly concave in ∇nU =
[
∂U
∂n1

, ∂U
∂n2

, ..., ∂U
∂nK

]
.

Concavity of L3 in ∇nU implies that:[
L3(n, U

∗,∇−
nU

∗)− L3(n, U
∗,∇+

nU
∗)
]
·
[
∇+

nU
∗ −∇−

nU
∗] > 0 (36)

Hence, Equation 36 implies that the Weierstrass-Erdman corner condition 35 cannot be satisfied
over any discontinuity surface, which in turn implies that the problem has continuous gradient.

The proof for the case where U∗(n) may be weakly convex (i.e., linear over some portion of
the space) is more difficult because not every perturbation maintains convexity (i.e., there are
some directions in which we cannot perturb U∗(n) because they would violate the convexity
condition). Thus, we need to devise our own perturbation to the schedule which maintains
convexity yet still yields a contradiction. Towards this purpose, we will consider a particular
perturbation to U∗(n).

Consider a surface that equals U∗(n) at σ−ϵp(σ) for each σ ∈ Σ and a small ϵ. Now suppose
this surface has gradient 1

2 [∇
+
nU

∗(σ) +∇−
nU

∗(σ)] along the segment [σ− ϵp(σ), σ+ ϵ′(σ)p(σ)],
intersecting U∗(n) again at σ + ϵ′(σ)p(σ) for small function ϵ′(σ). Next, note that this new
surface is convex. ∇+

nU
∗(σ) · v is increasing in all directions v as is ∇−

nU
∗(σ) · v (this follows

49See, for example Grabovsky and Truskinovsky (2010).
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because a function is convex if and only if it remains convex when restricted to a line segment).50

Hence, 1
2 [∇

+
nU

∗(σ) +∇−
nU

∗(σ)] · v is also increasing in all directions v, which implies that this
function is convex. Next, consider the pointwise maximum of this surface with U∗(n). This
new function is also convex as the pointwise maximum of two convex functions is convex.
Graphically, we are perturbing the utility schedule to look like Figure 6, where we have labeled
the perturbation surface ∆U(n1, n2) (and the perturbed schedule is the pointwise maximum of
U∗(n1, n2) and ∆U(n1, n2)).

Figure 6: Illustration of Perturbation to U∗(n)
Note: This figure shows an example of the perturbation we consider to the optimal utility schedule U∗(n) =
U∗(n1, n2). The perturbation surface is ∆U(n1, n2) and the perturbed schedule is given by the pointwise maxi-
mum of U∗(n1, n2) and ∆U(n1, n2).

Next, we consider the impact of this perturbation on the government’s Lagrangian:

∆

∫
N

L(n, U,∇nU) =∫
Σ

∫ σ+ϵ′(σ)p(σ)

σ−ϵp(σ)

{
L

(
n,

∮ n

σ−ϵp(σ)

[
1

2
∇+

nU
∗(σ) +

1

2
∇−

nU
∗(σ)−∇nU

∗(s)

]
· p(σ)ds, 1

2
∇+

nU
∗(σ) +

1

2
∇−

nU
∗(σ)

)

− L(n, U∗(n),∇nU
∗(n))

}
dndσ

(37)

where the impact on U is calculated via the fundamental theorem of calculus as the line integral
of the gradient of utility between σ− ϵp(σ) and n, noting that definitionally p(s) = p(σ) along
the orthogonal line between σ − ϵp(σ) and n.

Splitting up the inner integral into the line segments [σ − ϵp(σ), σ] and [σ, σ + ϵ′(σ)p(σ)],
dividing by ϵ, taking limits as ϵ→ 0, and using the rectangle approximation yields the following

50Note that ∇+
nU

∗(σ) · v and ∇−
nU

∗(σ) · v are constant (hence weakly increasing) if we move orthogonal to Σ
and increasing if we move along Σ.
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derivative:

1

ϵ
∆

∫
N
L(n, U,∇nU)

→
∫
Σ

{
ϵ

ϵ

(
L3(σ, U

∗(σ),∇−
nU

∗(σ)) ·
[
1

2
∇+

nU
∗(σ) +

1

2
∇−

nU
∗(σ)−∇−

nU
∗(σ)

]
+ L2(σ, U

∗(σ),∇−
nU

∗(σ))ϵ

[
1

2
∇+

nU
∗(σ) +

1

2
∇−

nU
∗(σ)−∇−

nU
∗(σ)

]
· p(σ)

)
+
ϵ′(σ)

ϵ

(
L3(σ, U

∗(σ)∇+
nU

∗(σ)) ·
[
1

2
∇+

nU
∗(σ) +

1

2
∇−

nU
∗(σ)−∇+

nU
∗(σ)

]
+ L2(σ, U

∗(σ),∇+
nU

∗(σ))ϵ

[
1

2
∇+

nU
∗(σ) +

1

2
∇−

nU
∗(σ)−∇+

nU
∗(σ)

]
· p(σ)

)}
dσ

ϵ′(σ)/ϵ→ 1 as ϵ→ 0 (and the L2 terms go to zero as they are of order ϵ2) so we are left with:51

1

ϵ
∆

∫
N
L(n, U,∇nU)

→
∫
Σ

{
L3(σ, U

∗(σ),∇−
nU

∗(σ)) ·
[
1

2
∇+

nU
∗(σ) +

1

2
∇−

nU
∗(σ)−∇−

nU
∗(σ)

]
+ L3(σ, U

∗(σ),∇+
nU

∗(σ)) ·
[
1

2
∇+

nU
∗(σ) +

1

2
∇−

nU
∗(σ)−∇+

nU
∗(σ)

]}
dσ

=

∫
Σ

1

2

[
L3(σ, U

∗(σ),∇−
nU

∗(σ))− L3(σ, U
∗(σ),∇+

nU
∗(σ))

]
·
[
∇+

nU
∗(σ)−∇−

nU
∗(σ)

]
dσ > 0

The final inequality follows by Equation 36. But this means that from the supposed optimal
schedule U∗(n), we have found a welfare improving perturbation, which is a contradiction.
Hence, it can never be optimal to have a discontinuous ∇nU

∗(n), which implies that it cannot
be optimal to have discontinuous z∗(n).

B First Order Approaches to Solving Multidimensional Screen-
ing Problems

B.1 First Order Approach I: Euler-Lagrange Equation

Perhaps the most fundamental first order approach to multidimensional screening involves the
Euler-Lagrange equation. The idea is to use the envelope condition 4 to express (T (z(n)), z(n))
as a function of (U(n),∇nU(n)) in order to rewrite the optimization problem solely in terms of
(U(n),∇nU(n)).52 Then we can derive the Euler-Lagrange equation associated to this calculus
of variations problem, which will in general be a complicated second order PDE.

Remark 5. As an example of this approach, suppose that N ⊆ (−∞, 0)K and

u(T, z;n) =

K∑
i=1

zi + T +

K∑
i=1

ni
z1+θi
i

1 + θi
(38)

51The limiting perturbation is symmetric around Σ, which is why ϵ′(σ)/ϵ→ 1.
52This of course requires that the mapping between (T (z(n)), z(n)) and (U(n),∇nU(n)) is bijective, which is

naturally not always the case.
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with z1, z2, ..., zK ≥ 0. Then the envelope condition tells us that:

Uni(n) = uni(T, z;n) =
z1+θi
i

1 + θi

Hence, this yields that:

zi(U(n),∇nU(n)) = [(1 + θi)Uni(n)]
1

1+θi (39)

Moreover, we can use Equations 38 and 39 to write:

T (U(n),∇nU(n)) = −
K∑
i=1

((1 + θi)Uni(n))
1

1+θi + U(n)−
K∑
i=1

niUni(n)

Hence, we can rewrite Equation 18 as (appending the budget constraint on to the objective
function with Lagrange multiplier λ):

max
U(n),λ

∫
N
{W (U(n),n) + λ[−T (U(n),∇nU(n))− E]} f(n)dn

n ∈ argmax
n′

u(T (U(n),∇nU(n)), z(U(n),∇nU(n));n) ∀n
(40)

Now, if the solution U∗(n) is interior in the sense that U∗(n) + ϵŨ(n) is incentive compatible
for any perturbation function Ũ(n) and sufficiently small ϵ, then the solution to the above
variational calculus problem is given by the Euler-Lagrange equation:

∂L(U,∇nU,n)

∂U
−

K∑
i=1

∂

∂ni

(
∂L(U,∇nU,n)

∂Uni

)
= 0 (41)

where
L(U,∇nU,n) =W (U,n) f(n) + λ[−T (U,∇nU)− E]f(n)

along with associated boundary condition, where p is the outward pointing normal to the
boundary ∂N: (

∂L(U,∇nU,n)

∂Uni

)
· p = 0 (42)

Unfortunately, Equations 41 and 42 typically have no known analytical solution and are more-
over are a difficult system of partial differential equations to solve. And if the optimal utility
function U(n) is not interior (e.g., it features bunching), then we cannot use this approach.

B.2 First Order Approach II: Optimal Control

A second potential approach might be to consider using optimal control theory.53 Mirrlees
(1976) suggested this approach for multidimensional optimal taxation as did Basov (2001) in the
context of more general multidimensional screening problems. Unfortunately, optimal control
methods often cannot be applied to multidimensional screening due to the inability to apply
the fundamental lemma of calculus of variations. To see why, it is helpful to do a change of
variables (as is standard in this literature, e.g., Mirrlees (1971)) and consider the government as

53A number of the points raised in this section developed out of conversations with Ilia Krasikov and Mike
Golosov as well as with Etienne Lehmann.
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choosing the functions z(n) and U(n), with the transfer function (now expressed as a function
of U , z, and n) determined implicitly via U = u(T (U, z,n), z;n).54

max
z(n),U(n)

∫
N
W (U(n),n) dF (n)

s.t.

∫
N
[T (z(n)) + E]dF (n) ≤ 0

n ∈ argmax
n′

u(T (U(n′), z(n′),n′), z(n′);n) ∀n

U(n) = u(T (U(n), z(n),n), z(n);n)

(43)

To solve System 43, we will consider z(n) as control variables, and U(n) as the state variable
governed by the envelope condition 4 (which plays the role of the equation of motion). We
define the Hamiltonian of this problem as:55

H(z, U, ϕ,n, λ) = {W (U,n) + λ [−T (U, z,n)− E]} f(n) + ϕ(n) ·∇nu(T (U, z,n), z;n) (44)

where ϕ(n) is a vector of costate variables. Now, if the solution z∗(n) is interior in the sense
that z∗(n) + ϵz̃(n) is incentive compatible when coupled with a suitable perturbation to the
utility function U(n) + ϵŨ(n), then we can apply a multidimensional analogue to Pontrya-
gin’s Maximum Principle to characterize the optimal solution (e.g., Udriste (2009)). Un-
fortunately, in general, the solution z∗(n) will not be interior due to the requirement that
∇nu(T, z;n)|z=z(n),T=T (z(n)) is a conservative vector field; hence, it is likely often the case that
perturbations to z∗(n) will generate a vector field ∇nu(T, z;n)|z=z∗(n),T=T (z∗(n)) that is not con-
servative. In other words, System 43 does not impose the requirement that∇nu(T, z;n)|z=z(n),T=T (z(n))

forms a conservative vector field. Thus, optimal control approaches are not valid in many mul-
tidimensional screening settings.

C Simulations Appendix

C.1 Calibration for Section 5.4

We use income data from the 2019 Current Population Survey for married heterosexual couples
both of whom are under the age of 65. The calibration exercise searches over the space of
four parameters θ1, θ2, α1, and α2. For each choice of these four parameters, we calibrate the
distribution of types f(n1, n2) to match the empirical joint income distribution of couples. We
assume that f(n1, n2) is log-normal and choose the parameters of the log-normal distribution to
best match the observed income distribution.56 Then given these four parameters and the corre-
sponding calibrated log-normal distribution f(n1, n2), we calculate the sum of squares between
the true and calibrated values of four statistics: the median compensated taxable income elas-
ticity for men (0.2, taken from Blomquist and Selin (2010)), the median compensated taxable
income elasticity for women (1, also taken from Blomquist and Selin (2010)), the percentage of
men who do not work (13.5%, from CPS data), and the fraction of women who do not work
(20%, from CPS data). Finally, we search over the space of these four parameters θ1, θ2, α1,
and α2 to minimize this sum of squares.

54This is WLOG as long as the mapping T 7→ U is bijective. Now, T 7→ U is injective conditional on a z
because uT (T, z;n) > 0 and we also typically assume T 7→ U is surjective onto R (i.e., any utility can be reached
with a sufficiently small or large transfer).

55Notationally, it’s important to remember that U represents the utility schedule (as a function of n) that the
government chooses and u represents the utility function of the individual problem: u(T, z;n).

56Technically, we assume that f(−n1,−n2) is log-normal because n1, n2 < 0.
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C.2 Simulations for Utility Function 26

Simulations when utility is given by Equation 26 are nearly identical as when utility is given
by Equation 21 after a change of variables: d = log(z1 + z2 + T ). Then, we consider agents as
maximizing:

u(d, z;n) = d+ n1
z1+θ1
1

1 + θ1
+ n2

z1+θ2
2

1 + θ2
− n21

2α
z1 −

n22
2α
z2

which is exactly the same as Equation 21. The only change to our optimization problem is
that we need to account for the change of variables from z1 + z2 + T to d when computing the
government’s budget constraint. Hence, we solve:

max
z(n),U(n)

∫
N
W (U(n),n)dF (n)

s.t.

∫
N
[exp(d(n))− z1 − z2 + E]dF (n) ≤ 0

U(n) = U(n) +

∮ n

n

[
z1(s)1+θ1

1+θ1
− s1

α z1(s)
z2(s)1+θ2

1+θ2
− s2

α z2(s)

]
· ds

∂z1
∂n1

(n) > 0,
∂z2
∂n2

(n) > 0,
∂z1
∂n1

(n)
∂z2
∂n2

(n)− ∂z1
∂n2

(n)
∂z2
∂n1

(n) > 0(
zθ11 (n)− n1

α

) ∂z1
∂n2

(n) =
(
z2(n)

θ2 − n2
α

) ∂z2
∂n1

(n)

d(n) = U(n)−
[
n1
z1(n)

1+θ1

1 + θ1
+ n2

z2(n)
1+θ2

1 + θ2
− n21

2α
z1(n)−

n22
2α
z2(n)

]
− z1 − z2

(45)

By Corollary 2.1 any solution to System 45 will have diffeomorphic n 7→ z. Moreover, we
know that any solution to System 45 satisfies the envelope condition 4 everywhere; hence, if we
confirm that ∀n we have u(T (z(n)), z(n);n) ≥ u(T (z(n′)), z(n′);n) for n′ ∈ ∂N, Theorem 2
ensures that the allocation is incentive compatible.

C.3 Additional Simulation Figures
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Figure 7: Optimal Average Tax Schedule for Couples
Note: This figure shows the optimal average tax rates for couples, assuming utility is given by Equation 26. f(n)
is calibrated to match the joint income distribution from the CPS and θ1, θ2, α1, α2 are chosen to match four
moments: the compensated taxable income elasticity for men (0.2, taken from Blomquist and Selin (2010)), the
compensated taxable income elasticity for women (1, also taken from Blomquist and Selin (2010)), the percentage
of men who do not work (13.5%, from CPS data), and the fraction of women who do not work (20%, from CPS
data). The social welfare function is given by W (U(n),n) = ψ(n)U(n) with welfare weights ψ(n) chosen so that
ψ(n) is ≈ 10, 000 times higher for the lowest income household than for the highest income household.

Figure 8: Jacobian Determinant, Couples Taxation Using CPS Data and Log Utility Over
Consumption
Note: This figure shows the Jacobian determinant ∂z1

∂n1

∂z2
∂n2

− ∂z2
∂n1

∂z1
∂n2

assuming utility is given by Equation 26. We
plot the Jacobian determinant against (− log(−n1),− log(−n2)) to compress the type distribution for readability.
f(n) is calibrated to match the empirical joint income distribution of couples from the CPS and θ1, θ2, α1, α2 are
chosen to match four moments: the compensated taxable income elasticity for men (0.2, taken from Blomquist
and Selin (2010)), the compensated taxable income elasticity for women (1, also taken from Blomquist and Selin
(2010)), the percentage of men who do not work (13.5%, from CPS data), and the fraction of women who do
not work (20%, from CPS data). The social welfare function is given by W (U(n),n) = ψ(n)U(n) with welfare
weights ψ(n) chosen so that ψ(n) is ≈ 10, 000 times higher for the lowest income household than for the highest
income household.
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(a) First Set of Input Data (b) Second Set of Input Data

Figure 9: Differences in Average Taxes, Our Method vs. Method of Aguilera and Morin (2008)
Note: This figure shows the differences in the average tax rates computed via our method described in Section
5.2 and the method of Aguilera and Morin (2008) for utility functions 19. Panel 9a shows this difference for the
first set of input data from Section 5.3 and panel 9b shows this difference for the second set of input data from
Section 5.3. Averaged over all individuals, the mean absolute difference between the average tax rates computed
via the two different methods is 0.14 percentage points (panel 9a) and 0.31 percentage points (panel 9b).
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