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Abstract

We introduce the alternative-dependent focal Luce model (ADFLM), which
is a random choice model that generalizes the well-known Luce (1959) model.
In the ADFLM, focal alternatives are chosen more frequently relative to their
utilities. We show that we can identify utilities, focal sets and the magni-
tude of focal biases from choice data. We also axiomatically characterize the
ADFLM by weakening IIA. Our model can explain the well-known behavioral
phenomena, the attraction and compromise effects.

Keywords: Random Choice Rule, Alternative-Dependent Focal Luce Model,
IIA, Focal Set.
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1 Introduction

Luce’s (1959) model (or multinomial logit model) is the most famous stochastic choice
model, and it is characterized by the independence from irrelevant alternatives (IIA)
axiom. The IIA states that the relative probability of choosing one alternative over
another from a menu is not affected by the presence of other alternatives. We propose
and characterize a generalization of the Luce’s model in which focality of alternatives
affect choice frequencies.

It is well-known that the IIA may fail in reality when an alternative has different
focality across different menus. For example, the probability of a dish being chosen
can be very different when you display it on the first page or on the last page of the
menu. The dishes on the first page gets more attention than the dishes on the last
page since consumers cannot give every dish the same attention when the menu is
large.

If a seller has an experience of selling on eBay, he will find that the views of
his listing growing fast in the first day, but it decays quickly after the first day. In
this period, his listing usually sells fast. This is because his listing belong to “new
listing” in the first day, which is usually displayed on the first page of these similar
items. But it will no longer belongs to “new listing” after one day, and it is not
displayed on the first page anymore. In this period, his listing usually takes a very
long time to sell. This phenomena indicates that consumer’s attention is limited,
the choice is affected by the attention.The limited consideration effect has been
studied by Manzini and Mariotti (2007), Masatlioglu, Nakajima and Ozbay (2012),
Cherepanov, Feddersen and Sandroni (2013), and Lleras et al. (2017). Kovach and
Tserenjigmid (2021) introduced the Focal Luce Model to capture the impact of the
focus of consumers. They studied a menu-dependent focal bias for focal alternatives,
where focal alternatives receive the same bias in the same menu. Compared to
their model, we study an alternative-dependent bias for alternatives, that is the
focal biases are the same for the same alternatives in every menu. We call it the
Alternative-dependent Focal Luce Model (ADFLM). Formally, a random choice rule
p is an ADFLM if there is a utility function u, a focus function F , and a focus bias
function δ such that for any A ∈ A and a ∈ A,

p(a,A) =
u(a)(1 + δ(a)1{a ∈ F (A)})∑
b∈A u(b)(1 + δ(b)1{b ∈ F (A)})

. (1)

The ADFLM is not a random utility model, but it can be thought as a random,

2



menu-dependent utility model. Under this view, the random utility of an alternative
x in menu A is

v(x,A) = ū(x) + δ̄(x)1{x ∈ F (A)}+ εx. (2)

In this equation, ū(x) is the fixed utility of x and εx is the random part of utility.
The additional utility for a focal alternative is δ̄(x), which is alternative-dependent.
The consumer will choose the alternative with the highest utility v given εx for all
x ∈ A. When εx follows the standard extreme value type I distribution, as in the
multinomial logit, Equation 2 can derive the random choice probability of ADFLM
in Equation 1.

The rest of this paper is organized as follows. In Section 2, we define the model,
and show that the ADFLM can explain the attraction and compromise effects. In
Section 3, we infer the focal set from choice frequencies and axiomatically characterize
our model. In Section 4, we compare the ADFLM with Luce model and FLM with
some data. In Section 5, we discuss the related literature.

2 Model

2.1 Model Setup

We first introduce the random choice rule and Luce model before introducing our
model. Here, we denote the set X as a finite set of all alternatives and A as the
collection of all nonempty sets subsets of X.

Definition 1. A function p:X×A → [0, 1] is called a random choice rule, if for any
A ∈ A ,

∑
x∈A p(x,A) = 1, and p(y, A) = 0 when y /∈ A.

In this paper, we only focus on positive random choice rules. i.e., we assume
p(x,A) > 0 for any x ∈ A. The Luce model is the most well-known random choice
rule. It is defined as follows.

Definition 2. A random choice rule p is a Luce Model if there is a utility function
v: X → R++ such that for any A ∈ A and x ∈ A,

p(x,A) =
v(x)∑
y∈A v(y)

.

3



For notational simplification, we define the probability ratio of a and b as r(a, b) =
p(a,{a,b})
p(b,{a,b}) for a binary menu with alternatives a and b.We also denote the probability

ratio of a and b in a menu A as rA(a, b) = p(a,A)
p(b,A)

. Note that the Luce model satisfies

the independence of irrelevant alternatives (IIA) axiom, which is defined as follows.

Definition 3. A random choice rule p satisfies Luce’s independence of irrelevant
alternatives (IIA) axiom if for any A,B ∈ A and all a, b ∈ A ∩B,

rA(a, b) = rB(a, b).

IIA may fail in reality, for example, the ratio could be very different when both
alternatives on the first page of a menu from the ratio when one alternative is on
the first page and the second is on the last page. This is because the alternative on
the first page draws more attention, that is, the alternative is salient or focal. Now
we introduce an alternative-dependent focal Luce model to capture the saliency of
alternatives.

Before we introduce our model, we first introduce a focus function that specifies
the focal alternatives for each menu. The focus function is a mapping F : A → 2X

if F (A) ⊆ A for any A ∈ A . We denote the set of focal alternatives as the focal
set F (A), where F (A) ⊆ A. Then, the alternative-dependent focal Luce model
(ADFLM) is defined as follows:

Definition 4. A random choice rule p is an ADFLM if there is a utility function
u: X → R++, a focus function F : A → 2X \ {φ}, and a focus bias function δ:
X → R++ such that for any A ∈ A and a ∈ A,

p(a,A) =
u(a)(1 + δ(a)1{a ∈ F (A)})∑
b∈A u(b)(1 + δ(b)1{b ∈ F (A)})

. (3)

For a binary menu {a, b}, it is easy for both alternatives to draw the same
attention since there are only two alternatives. Thus, we assume that a, b have
same attention for any a, b ∈ {a, b}. Neither of them draws any additional atten-
tion, that is, both a and b are non-focal in a binary menu (F ({a, b}) = φ). Then,

p(a, {a, b}) = u(a)
u(a)+u(b)

.

Unlike the FLM of Kovach and Tserenjigmid (2021), which has a menu-dependent
focality. The ADFLM is alternative-dependent. Here we define the FLM as follows.
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Definition 5. A random choice rule p is a Focal Luce Model (FLM) if there is a
utility function u: X → R++, a focus function F : A → 2X \ {φ}, and a focus bias
function δ: A → R++ such that for any A ∈ A and a ∈ A,

p(a,A) =
u(a)(1 + δ(A)1{a ∈ F (A)})∑
b∈A u(b)(1 + δ(A)1{b ∈ F (A)})

.

Before we characterize the ADFLM, we would like to define the Luce Product
Rule, which will be used to characterize our ADFLM. LPR is a weakening of IIA,
which is only satisfied in binary menus.

Definition 6. (LPR). A random choice rule p satisfies Luce’s Product Rule (LPR)
if for any a, b, c ∈ X, r(a, c) = r(a, b) · r(b, c).

2.2 Discussion

The ADFLM can explain two well-known behavior phenomena, the attraction effect
and compromise effect.1

Attraction Effect: The attraction effect is the phenomena that people have a
choice reversal when an expensive alternative with medium-quality is introduced
to the menu. This is a well-known violation of regularity which says the choice
probability of an alternative is not affected by adding a new alternative.

Simonson and Tversky (1992) documented this phenomena in their experimental
study. In their experiment, they have 3 microwave ovens x y and z. There were
{x, y} in the original menu, where x is Emerson with 35% off discount, and y is
Panasonic I with 35% off discount. Then, they introduced z, which is Panasonic II
with only a 10% off discount. They found that y was chosen with a higher frequency
when z was introduced. This phenomena violates the regularity, which cannot be
explained by any random utility models including the Luce model. Table 1 shows
the choice frequency data from this experiment.

The ADFLM can explain the attraction effect. Suppose for the original menu,
F ({x, y}) = φ, but F ({x, y, z}) = {y}. In the menu {x, y, z}, Panasonic I is more

1The attraction and compromise effects were first introduced by Simonson (1989) and Huber et
al. (1982) respectively in their experimental studies. These phenomena were confirmed by many
studies later (e.g., Simonson and Tversky 1992, Tversky and Simonson 1993, Ariely and Wallsten
1995, Herne 1998, Doyle et al. 1999, Chernev 2004, and Sharpe et al. 2008).
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Alternatives/Menus {x, y} {x, y, z}
x 0.57 0.27
y 0.43 0.60
z – 0.13

Table 1: Choice Frequency for Microwave Oven

attractive than Panasonic II since it has a higher discount. The higher discount draws
more attention for y even there are more alternatives in the menu. The attraction
effect violates the regularity where p(y, {x, y, z}) = 0.60 > p(y, {x, y}) = 0.43. We
can obtain choice frequencies in Table 1 with parameters u(x) = 1 (normalized),
u(y) = 0.75, u(z) = 1.03, and δ(y) = 1.22 based on the above data.

Compromise effect: The compromise effect says that people prefer to choose mid-
dle option when there are extreme alternatives. Simonson and Tversky (1992) also
documented this phenomena in their experimental study. In their experiment, they
have 3 versions of 35mm Minolta Cameras, x, y and z. At the original menu {x, y},
there were x with a low quality and low price, and y with a middle quality and
middle price. Then, they added another alternative z with high quality and high
price. Then, they found that the probability of choosing y increased (relative to x)
when z is added. This phenomena violets the IIA, which cannot be explained by the
Luce model. Table 2 shows the choice frequency data from this experiment.

Alternatives/Menus {x, y} {x, y, z}
x 0.50 0.22
y 0.50 0.57
z – 0.21

Table 2: Choice Frequency for Minolta Camera

The ADFLM can explain the compromise effect. For the original menu, F ({x, y}) =
φ, but F ({x, y, z}) = {y}. In the menu {x, y, z}, the middle alternative y is focal,
and the extreme alternatives x and z are non-focal. Mathematically, p(x, {x, y}) >
p(x, {x, y, z}) and p(y, {x, y}) < p(y, {x, y, z}) since

p(x, {x, y}) =
u(x)

u(x) + u(y)
>

u(x)

u(x) + u(y) + u(z)
= p(x, {x, y, z}),
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and,

p(y, {x, y}) =
u(y)

u(x) + u(y)
<

u(y)(1 + δ(y))

u(x) + u(y)(1 + δ(y)) + u(z)
= p(y, {x, y, z}).

Table 2 also violates the regularity where p(y, {x, y, z}) = 0.57 > p(y, {x, y}) = 0.5.
We can obtain choice frequencies in Table 2 with parameters u(x) = 1 (normalized),
u(y) = 1 u(z) = 0.96, and δ(y) = 1.59 based on the above data.

3 Axiomatic Characterization of the Model

In this section, we will axiomatically characterize our model. Before doing that, we
first infer the focal set by some probability ratio relationship other than the IIA.
This is because IIA fails when some alternatives are in the focal sets.

Definition 7. For any set A, (i) a is revealed focal in A if there exists c ∈ A such
that rA(c, a) < r(c, a). We denote the set of revealed focal alternatives in A by
F ∗(A). (ii) a is revealed non-focal in A if for all c′ ∈ A, if rA(c′, a) ≥ r(c′, a). The set
of revealed non-focal alternatives in A is denoted by N∗(A), i.e. N∗(A) = A/F ∗(A).

We first show that our Revealed Focality correctly identifies focality of alterna-
tives in the ADFLM.

Proposition 1. (Revealed Focality) In the ADFLM, F ∗ = F .

Proof. Since we know that rA(c, a) = (1+δ(c)1{c∈F (A)})u(c)
(1+δ(a)1{a∈F (A)})u(a) and r(c, a) = u(c)

u(a)
. There

exists c ∈ A such that rA(c, a) < r(c, a) means a is focal in A. This can derived from
the observation that

rA(c, a) < r(c, a) iff
1 + δ(c)1{c ∈ F (A)}

1 + δ(a)
< 1,

where either c ∈ F (A) or c ∈ F (A) and δ(c) < δ(a). The latter inequality indicates
that a ∈ F (A) = F ∗(A). Similarly, for all c′ ∈ A,

rA(c′, a) ≥ r(c′, a) iff 1 + δ(c′)1{c′ ∈ F (A)} ≥ 1,

where the latter inequality indicates a /∈ F (A), but a ∈ N(A) = A/F (A) = N∗(A).
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Revealed Focality can be used to infer the focal of alternatives in a menu, and
is essential for characterizing the ADFLM. We now can define our characterizing
axioms.

Axiom 1. (Menu-Independent Focality) For any A,B ∈ A and a, b, c such that
a ∈ F ∗(A) ∩ F ∗(B), b ∈ N∗(A), and c ∈ N∗(B),

rA(a, b)

r(a, b)
=
rB(a, c)

r(a, c)
.

This axiom requires that the effects of focality are menu-independent. It states
that if an alternative is focal in two different menus, then the probability ratio
between this focal alternative and any other non-focal alternatives over the binary
probability ratio does not change across menus.

In this model, we want to show how changes in focus affect choice behavior. IIA
is violated in this model, but we can have Revealed IIA, which says alternatives
satisfy IIA if they are non-focal in the menu, which is a weakening form of IIA.

Axiom 2. (Revealed IIA) For any A ∈ A and any a, b ∈ N∗(A), rA(a, b) = r(a, b).

Revealed IIA suggests that if a and b are both non-focal in A, then they sat-
isfy IIA. Based on the Revealed IIA, Menu-Independent Focality and LPR we can
characterize the ADFLM. Then we have Theorem 1.

Theorem 1. A random choice rule p satisfies Revealed IIA, Menu-Independent Fo-
cality, and LPR if and only if it is an ADFLM.

Theorem 1 fully characterizes our ADFLM. The proof of Theorem 1 in Appendix
A.1. We can also see that u, F and δ are uniquely identified. This is shown in
Proposition 2.

Proposition 2. (Uniqueness) If (u, F, δ) is an ADFLM that represents p, then
(u′, F ′, δ′) is another ADFLM representation of p if and only if (i) F = F ′, (ii)
there is an α > 0, such that u′ = αu, and (iii) δ = δ′.

Since the ADFLM coincides with Luce’s model on binary menus, the uniqueness
of u is straightforward. The uniqueness of the focal set F follows from Proposition
1. For the focal bias δ, rA(a,b)

r(a,b)
= 1 + δ(a) since for any A,B and a, b ∈ A ∩ B with

a ∈ F ∗(A) and b ∈ N∗(A), δ(a) is unique when Menu-Independent Focality satisfied
in A and B.
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4 Comparison to Luce Model and FLM

In this section we show that the ADFLM is neither a special case of the FLM nor
nests of it. To see this, consider examples of the FLM and ADFLM in Table 3 and
4.

Table 3: Example for FLM

Alternatives/ Menus A B C
a1 1/4 3/9 2/4
a2 1/4 3/9 1/4
a3 1/4 2/9 1/4
a4 1/8 1/9 –
a5 1/8 – –

Table 4: Example for ADFLM

Alternatives/ Menus A B C
a1 1/4 3/10 3/7
a2 1/4 4/10 2/7
a3 1/4 2/10 2/7
a4 1/8 1/10 –
a5 1/8 – –

In Table 3 and Table 4, alternatives in menu A are non-focal. For simplicity,
we normalize the utility of a1 to 1, that is u(a1) = 1. Here we can derive that
a1, a2 ∈ F (B), F (C). This is because rA(a1, a2) = rB(a1, a2) = rC(a1, a2) = 1, but
rA(a1, a3) = 1 6= rB(a1, a3) = 1.5 6= rC(a1, a3) = 2. This means a1, a2 ∈ F (B), F (C),
and we can further derive that δ(B) = 0.5 and δ(C) = 1 by the random choice rule
p in FLM. Similarly, we can derive that a1, a2 ∈ F (B) and a1 ∈ F (C) from Table
3. This is because rB(a1, a3) = rC(a1, a3) = 1.5, rB(a1, a4) = rC(a1, a4) = 3 and
rB(a1, a5) = rC(a1, a5) = 3, the focality of a1, a3, a4, a5 are the same in B and C.
But rB(a1, a2) = 3/4 6= rC(a1, a2) = 1.5. This means a2 ∈ F (B), but a2 ∈ N(C).
According to Equation 3, we can derive δ(a1) = 0.5 and δ(a2) = 1.

Note that the example in Table 4 cannot be rationalized by FLM. This is because
p(a1, B) > p(a1, A) and p(a2, B) > p(a2, A), which indicates that both a1 and a2 are
focal in B. Since u(a1) = u(a2), p(a1, B) = p(a2, B) if the data can be rationalized
by FLM. However, p(a1, B) = 3/10 6= p(a2, B) = 4/10, it cannot be rationalized by
FLM.

By comparing Table 3 and 4 of FLM and ADFLM, we can see that IIA satisfies
when alternatives are both focal or non-focal in FLM. For ADFLM, IIA satisfies
when alternatives have the same focality in two menus.
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5 Related Literature

The benchmark economic model of rational behavior for random choice is the ran-
dom utility model. The random utility model has a very broad literature, such as
Falmagne (1978), Barbera and Pattanaik (1986), and McFadden and Richter (1990).
The Luce (1959) Model is a special case of the random utility model. Our model,
like Kovach and Tserenjigmid’s (2021) Focal Luce model, is not a special case of the
random utility model, which can explain the attraction and compromise effects that
a random utility model cannot explain.

The ADFLM can be treated as a stochastic version of consideration sets model
which has been studied by Manzini and Mariotti (2007), Masatlioglu, Nakajima
and Ozbay (2012), Cherepanov, Feddersen and Sandroni (2013), and Lleras et al.
(2017). In the consideration sets model, consumers only make their choices among
alternatives in the consideration set with a deterministic preference relationship.
However, in our model, we allow consumer choose alternatives outside the focal set
with a random probability rule p. This is more realistic since individuals may have
random preferences. We characterize the ADFLM and identify both the focal set F
and the magnitude of the bias δ.

Like the FLM introduced by Kovach and Tserenjigmid (2021), we focus on the
focal set and the bias on a focal alternative. Their FLM assumes that the focal bias
is menu-dependent. However, we allow for an alternative-dependent focal bias. The
ADFLM can explain the additional utility brought by both the focal set and the
alternative itself, while the FLM can explain the menu-dependent focal bias.

In this paper, we study the alternative-dependent focal Luce model, where the
focal bias is alternative-dependent. We first define our ADFLM, and compare our
model with Luce model and FLM. Then, we infer the focal set and axiomatically
characterized the model. Compared to the FLM which satisfies the IIA when both
alternatives are focal or non-focal on two menus, our ADFLM satisfies the IIA when
alternatives are the same in different menus.
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Appendix.

A.1. Proof of Theorem 1.

We prove theorem 1 by two parts, both the necessity and sufficiency.
Necessity. Given the ADFLM p, we need to prove that p satisfy LPR, Revealed
IIA and Menu-Independent Focality.
LPR: Since we know that the binary model has the random choice probability
p(a, {a, b}) = u(a)

u(a)+u(b)
, the ratio of r(a, b) = u(a)

u(b)
for any a, b ∈ X. Thus,

r(a, c) =
u(a)

u(c)
=
u(a)

u(b)
× u(b)

u(c)
= r(a, b) · r(b, c).

Revealed IIA: For any a, b ∈ A, rA(a, b) = u(a)(1+δ(a)1{a∈F (A)})
u(b)(1+δ(b)1{b∈F (A)}) . If rA(c, a) ≥ r(c, a)

for all c ∈ A, we must have rA(c, a) = u(c)(1+δ(c)1{c∈F (A)})
u(a)

≥ u(c)
u(a)

= r(c, a). Thus,

for any a, b ∈ A, if rA(c, a) ≥ r(c, a) and rA(c, b) ≥ r(c, b) for all c ∈ A, then

rA(a, b) = u(a)
u(b)

= r(a, b).

Menu-Independent Focality: For any a ∈ F (A)∩F (B), b ∈ N(A) and c ∈ N(A),
we can get:

rA(a, b)

r(a, b)
=
u(a)(1 + δ(a))

u(b)
/
u(a)

u(b)
= 1 + δ(a),

and
rB(a, c)

r(a, c)
=
u(a)(1 + δ(a))

u(c)
/
u(a)

u(c)
= 1 + δ(a).

Thus, rA(a,b)
r(a,b)

= rB(a,c)
r(a,c)

= 1 + δ(a).

Sufficiency. We will prove the sufficiency by three steps.

Step 1. We first fix some a∗ ∈ X. Then we can construct the utility function
u : X → R++ in the following way: u(a) = r(a, a∗) for any a ∈ X. Based on
the Luce’s Product Rule, we know that r(a, b) = r(a, a∗)r(a∗, b), which is r(a, b) =

u(a)× 1
u(b)

according to the construction of u. Since p(a,{a,b})
p(b,{a,b}) = u(a)

u(b)
, and p(a, {a, b})+

p(b, {a, b}) = 1, then we can get: p(a, {a, b}) = u(a)
u(a)+u(b)

.

Step 2. For any A ∈ A with |A| ≥ 3, we derive the focal set and non-focal set for
A.
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Fact 1. There is F ∗(A) ⊆ A, such that a ∈ F ∗(A) and b, b′ ∈ N∗(A) = A/F ∗(A),

rA(b, b′) = r(b, b′), and rA(a, b) > r(a, b).

Proof of Fact 1: We need to show that for any b, b′ ∈ N∗(A) = A/F ∗(A), rA(b, b′) =
r(b, b′), and for any a ∈ F ∗(A), b ∈ N∗(A), then rA(a, b) > r(a, b).
1. For any b, b′ ∈ N∗(A), rA(c, b) ≥ r(c, b) and rA(c, b′) ≥ r(c, b′) for all c ∈ A
according to the definition (Revealed Focality) N∗(A). By Revealed IIA, rA(b, b′) =
r(b, b′).
2. For any b ∈ N∗(A), we have rA(c, b) ≥ r(c, b) for all c ∈ A. For all b′ ∈ A such
that rA(b′, b) = r(b, b′), we must have

rA(c, b) = rA(c, b′)rA(b′, b) ≥ r(c, b′)r(b′, b) = r(c, b), by LPR.

Then, we can get rA(c, b′) ≥ r(c, b′) for all c ∈ A and all b′ such that rA(b, b′) =
r(b, b′). By the definition of N∗(A), b′ ∈ N∗(A). Then for any a ∈ A such that
rA(a, b) > r(a, b), a ∈ F ∗(A) by the definition of (Revealed Focality) F ∗(A). Thus,
we also proved that for any a ∈ F ∗(A) and b ∈ N∗(A), rA(a, b) > r(a, b).

Step 3. Let |F ∗(A)|, |N∗(A)| ≥ 1, and F ∗(A) = {a1, ..., an}, N∗(A) = {b1, ..., bm}.
By the construction of u, rA(bi, b1) = r(bi, a1) = u(bi)

u(b1)
. Thus, p(bi, A) = u(bi)

u(b1)
×

p(b1, A). For any aj ∈ F ∗(A), we have rA(aj, b1) > r(aj, b1). Denote that
rA(aj ,b1)

r(aj ,b1)
=

1 + δ(aj, A). Similarly, if aj ∈ F ∗(B) for some B ∈ A and b∗1 ∈ B, we have:
rA(aj ,b

∗
1)

r(aj ,b∗1)
= 1 + δ(aj, B). By Menu-Independent Focality, we can further denote

rA(aj ,b1)

r(aj ,b1)
=

rA(aj ,b
∗
1)

r(aj ,b∗1)
= 1 + δ(aj).

Then, by LPR, rA(aj, a1) = rA(aj, b1)× rA(b1, a1) =
1+δ(aj)

1+δ(a1)
× r(aj, b1)r(b1, a1) =

1+δ(aj)

1+δ(a1)
r(aj, a1). Since r(aj, a1) =

u(aj)

u(a1)
, rA(aj, a1) =

1+δ(aj)

1+δ(a1)

u(aj)

u(a1)
. Thus, p(aj) =

u(aj)(1+δ(aj))

u(a1)(1+δ(a1))
× p(a1, A). Then, we have:

1 =
n∑
i=1

p(ai, A)+
m∑
j=1

p(bj, A) =

∑n
i=1 u(ai)(1 + δ(ai))

u(a1)(1 + δ(a1))
·p(a1, A)+

∑m
j=1 u(bj)

u(b1)
·p(b1, A).
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Now, we can derive p(b1, A), which is:

p(b1, A) =
p(b1, A)

1
=

p(b1, A)∑n
i=1 u(ai)(1+δ(ai))

u(a1)(1+δ(a1))
· p(a1, A) +

∑m
j=1 u(bj)

u(b1)
· p(b1, A)

,

=
u(b1)∑n

i=1 u(ai)(1 + δ(ai))
u(b1)

u(a1)(1+δ(a1))
· p(a1,A)
p(b1,A)

+
∑m

j=1 u(bj)

=
u(b1)∑n

i=1 u(ai)(1 + δ(ai)) +
∑m

j=1 u(bj)
, by the definition of δ(ai).

Since
∑n

i=1 p(ai, A) +
∑m

j=1 p(bj, A) = 1, we can also get p(ai, A), which is:

p(ai, A) =
u(ai)(1 + δ(ai))∑n

i=1 u(ai)(1 + δ(ai)) +
∑m

j=1 u(bj)
.
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