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Abstract: Empirical evidence consistently shows that individuals often skew their

probability assessments optimistically, a phenomenon known as wishful thinking (WT).

This paper investigates the impact of WT on bidder behavior in private value auc-

tions. Critically, under WT beliefs about others are endogenous to the mechanism.

We find that wishful thinking induces underbidding in traditional first-price sealed-

bid auctions, corroborating recent experimental findings. Importantly, behavior in

second-price auctions is unchanged, and so revenue equivalence does not hold under

WT. Next, we derive the optimal mechanism under WT and find that (i) the opti-

mal mechanism is a variant of the sad-loser auction, as first proposed by Riley and

Samuelson (1981), and (ii) (expected) seller revenue is increasing in the degree of

wishful thinking exhibited. These insights illustrate the importance of understanding

bidders’ belief biases in auction design.
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1 Introduction

Beliefs about economic variables and the behavior of others play critical roles in many

economic settings. For example, an investor’s decision whether or not to purchase

shares in a firm depends on her beliefs about the firm’s future profits. Likewise,

individuals decide on their insurance levels based on their beliefs about the likelihood

of accidents or health complications. It is common to assume in economic models that

beliefs are “correctly calibrated,” or decision makers exhibit rational expectations, in

contrast to the myriad of biases observed in experimental economics.

This paper explores the implications of a particular type of belief bias, wishful

thinking (WT), in auctions with independent, private values. WT is a form of opti-

mism where the desirability of an outcome influences its perceived probability. In an

auction setting, a wishful thinker misperceives the distribution of the other’s values

and hence she also misperceives the distribution of payoffs from the mechanism. To

model WT, we adapt Kovach (2020) to an auction setting. A bidder’s beliefs are

“twisted” via a distortion function that transforms the true distribution over values

into a subjective distribution that “shifts” probability mass from bad outcomes to

good outcomes. In short, this means that a wishful bidder puts excessive probability

on other bidders realizing low valuations; she believes she is more likely to win and

pay a lower price conditional on winning than she should.

We start our analysis by studying the impact of WT in common auction formats.

First, we show that WT induces underbidding in the standard first-price auction

because bidders overestimate their chances of winning given their bid. Notably, this

does not arise in the second-price auction, since the (weakly) dominant strategy is

independent of a bidder’s beliefs about others. Therefore, revenue equivalence does

not hold for wishful bidders.
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The mechanism design literature primarily assumes (subjective) expected utility

preferences, which allows for additive separation of agents’ expected utility into ex-

pected allocation and expected payment. Using the envelope theorem, the expected

revenue of an incentive-compatible mechanism becomes a function of the expected

allocation for each type (e.g., Myerson-type characterization). When beliefs are dis-

torted due to wishful thinking expectations are not consistently additive, complicating

the application of Myerson-type characterization.

Consider a scenario with two risk-neutral bidders. One is susceptible to WT,

while the other is a standard (subjective) expected utility agent. For the bidder

not influenced by WT, all mechanisms that yield the same expected payment and

expected allocation are considered equivalent. In this case, the seller can disregard

the actual distribution of payment and allocation, focusing solely on their expected

values.

However, this principle does not apply to the bidder affected by WT. Let’s consider

a situation where both bidders are presented with two different mechanisms, each of-

fering the same expected allocation and expected payment from the perspective of

the seller. One mechanism provides winning probability and payment uncondition-

ally, irrespective of others’ reports, while the other is conditional on those reports.

The wishful thinker will typically prefer the mechanism with outcomes contingent

on others’ reports. This preference arises because wishful thinkers tend to adjust

their beliefs to favor scenarios that yield more favorable results. When outcomes

hinge on factors with subjective uncertainty, like others’ reports, there is room for

bidders to engage in wishful thinking and imagine more favorable outcomes. This

leads them to overestimate the actual utility value of a particular bid (i.e., because

they overestimate their chances of winning).

From the seller’s perspective, both mechanisms are equally feasible. However, the
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one with outcomes conditioned on others’ reports has the potential to generate more

surplus that can be extracted, provided all bidders report truthfully. Consequently,

the mechanism that conditions outcomes on others’ types will consistently yield higher

revenue.

Further complicating the problem is the seller’s authority over the distribution of

outcomes. This control plays a pivotal role in shaping the extent to which the bidder

is influenced by WT, rendering the problem intricate. Presently, the seller bears the

responsibility of crafting the intricate distribution of payment and allocation. This

introduces non-additivity to the expectation operator, as beliefs evolve alongside the

distribution of outcomes. Intuitively, WT induces a ”positive feedback” loop between

behavior and beliefs. Navigating this complexity is achieved through the application

of the converse envelope theorem, as proposed by (Sinander, 2022).

Our main results reveal that sellers can exploit WT-affected bidders by employing

a variant of the sad-loser auction, as first introduced by (Riley and Samuelson, 1981).

Wishful thinkers typically underestimate their chances of being the “sad loser,” mak-

ing this auction strategy particularly effective in leveraging their behavior.

The remainder of the paper is structured as follows. Section 2 reviews the related

literature. Section 3 provides a simple motivational example to illustrate how wishful

thinking can influence bidders’ behavior. In Section 4, we formalize the concept and

introduce relevant techniques that we employ to address the problem. Section 5 and

6 delve into the specific examination of two types of wishful thinking distortions and

their impact on the action design problem. Section 7 presents a discussion of the

results and their implications
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2 Related Literature

2.1 Wishful Thinking

Wishful Thinking (WT) occurs when an event’s desirability influences its perceived

probability. The psychological literature has long acknowledged this bias (Granberg

and Brent, 1983; Hogarth, 1987; Cohen, 1992). The psychology literature suggests

that WT is context-specific, and is more frequently observed in competitive situations

and those involving subjective probabilities. (Krizan and Windschitl, 2007).

More recently, wishful thinking has been gaining traction in economics, with ex-

perimental evidence in Mayraz (2011) and Engelmann et al. (2023) and an axiomatic

model developed by Kovach (2020). In Mayraz (2011), subjects were assigned roles

as either farmers or bakers, and were tasked with predicting wheat prices from data.

If subjects form rational beliefs, then they should make similar predictions across

roles because they observed the same information. The results, however, show that

subjects’ beliefs are influenced by their role, in line with wishful thinking. Engelmann

et al. (2023) finds evidence for wishful thinking when subjects are faced with anxi-

ety due to future discomfort or losses. They also find that Wishful thinking is more

pronounced with ambiguous information.

2.2 Mechanisms with non-SEU bidders

Our paper contributes to the growing literature on mechanisms designed under bounded

rationality or behavioral bidders.

Most mechanism design with non-SEU bidders has focused on two specific pref-

erence theories: Maxmin Expected Utility(Gilboa and Schmeidler, 1989) and Cu-

mulative Prospect Theory (Tversky and Kahneman, 1992). For example, a recent
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addition to the literature on loss aversion in auctions includes Rosato (2023). In this

paper, he considers sequential auction design and shows that loss aversion induces

history-dependence and a discouragement effect.

Other forms of bounded rationality have also been considered. For instance,

Gagnon-Bartsch et al. (2021) considered the impact of projection bias in auctions.

With independent private values, such bidders overbid in first-price auctions, but not

in second-price ones. The focus of the paper, however, is on common value auctions.

They show that in such settings second-price auctions are less efficient than first-price

auctions.

2.3 The Sad-Loser Auctions

Our main results show that the revenue-maximizing auction for WT bidders is a

variant of the sad-loser auction, first introduced by Riley and Samuelson (1981).

This auction type is characterized by a system where only the losers pay, while the

winners receive goods free of charge.

The sad-loser auction has been shown to maximize revenue in a variety of settings,

including Tullock contests (Cohen and Sela, 2005; Matros, 2012; Minchuk, 2018) and

when bidders are risk loving (e.g., bidders have exponential utility)(Nikolova et al.,

2018).

3 Motivating Example: Wishful Thinking and Un-

derbidding in FPA

Consider a private value auction with two bidders who exhibit Wishful Thinking

(WT). In this setting, the bidders’ valuations θ are independently drawn from a
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uniform distribution U [0, 1]. WT is a bias in the bidders’ beliefs in which they assign

excessive probability to “better” outcomes. We start with a simple way to capture

this idea and suppose that each bidder “shifts” their beliefs slightly toward the best-

case scenario. In this example, the best case occurs when the other bidders do not

value the good at all. We can therefore model this bias using the distorted belief

Gδ(θ) = (1− δ)G(θ) + δ1{θ = 0}, with δ capturing the degree of bias.

Our objective is to examine the implications of WT on bidder behavior in two

common auction formats: the First-Price Auction (FPA) and the Second-Price Auc-

tion (SPA). FPA involves bidders submitting sealed bids, with the highest bidder

winning the item and paying their bid. In SPA, the highest bidder wins but pays the

price of the second-highest bid.

To illustrate the effects of WT, we analyze the symmetric Bayesian Nash equilib-

rium (BNE) in both FPA and SPA, assuming a limit case where the minimum bid

approaches zero. Our focus is on the bidding strategies and resulting seller revenue

in the presence of WT.

β(θ) SEU WT

FPA θ
2 max{θ2 −

δ
1−δ , 0}

SPA θ θ

Table 1: Bidding Strategies in FPA and SPA

Table 1 summarizes the bidding strategies in FPA and SPA for both WT bidders

and bidders with Subjective Expected Utility (SEU). The strategies reflect the influ-

ence of WT on bidder behavior. We observe that WT bidders tend to underbid in

FPA, adjusting their bids downward due to their belief that others’ valuations are

lower than standard agents would believe. Conversely, in SPA, WT bidders tend

to reveal their true valuations, resulting in bidding strategies that align with SEU

bidders.
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These findings have important implications for auction outcomes and seller rev-

enue. In FPA, the bias induced by WT leads to reduced seller revenue compared to

auctions with SEU bidders.1 However, in SPA, the bidding strategy of revealing the

true type dominates, resulting in revenue equivalence between WT bidders and SEU

bidders.

By examining the impact of WT on bidder behavior and auction outcomes, we

shed light on the need for alternative mechanisms. One direction is to look at seller

optimal mechanisms - can the seller exploit the bias to increase their profits? In

the following sections, we delve into the manipulation of beliefs and the design of

optimal mechanisms, aiming to maximize seller revenue and mitigate the impact of

WT-induced underbidding.

4 Framework and Notation

This section presents the general framework and notation used throughout the paper.

We consider a single good auction with n bidders subject to wishful thinking bias.

The set of bidders is denoted as N = 1, 2, ..., n, with bidder i being the typical bidder.

Each bidder i has a quasi-linear utility function defined as u(q, t, θi) = θiq − t, where

q represents the probability of winning the good, t denotes the monetary payment

(transfer to the mechanism), and θi represents bidder i’s private valuation or type.

The payment is positive and bounded by the budget constraint t̄ > 1. The valuations

θi are drawn independently from a distribution F with a continuous density f over

1Previous experimental results found a tendency to overbid in first-price sealed-bid auctions,
compared with the risk-neutral Nash Equilibrium (Kagel and Levin, 2008). The literature offered
various explanations, such as risk aversion (Cox et al., 1988), regret aversion (Engelbrecht-Wiggans,
1989), and spiteful motives (Morgan et al., 2003). However, a recent study by Neugebauer and
Selten (2006) suggests the overbidding behavior may be influenced by the information feedback
process in FPA’s standard setting. Our research builds upon this observation and proposes that
Wishful Thinking (WT) may provide an explanation for underbidding in FPA.
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the possible types Θ = [0, 1]. The distribution of types for the bidders is identical

and independent, denoted as G = FN−1 over Θ−i = ΘN−1.

To describe uncertainty that depends on others’ types, we introduce random vari-

ables defined on the probability space (Θ−i,Bn−1, G), where Θ−i = [0, 1]n−1 and Bn−1

is the Borel σ-algebra of Rn−1 restricted to [0, 1]n−1. Capital calligraphic letters,

such as Q,P , T , represent sets of real-valued random variables defined on Θ−i, while

boldface lowercase letters, such as q,p, t, denote specific elements of these sets. Fur-

thermore, boldface capital letters, such asQ,P,T, represent functions that map types

to random variables defined on Θ−i. For example, Q : Θ → Q implies Q(θ)(θ−i) can

be denoted as Q(θ, θ−i), where Q : Θ×Θ−i → [0, 1].

In the presence of wishful thinking bias, bidders’ beliefs about the probability of

winning and payment depend on others’ types θ−i. This introduces uncertainty for

bidder i in the form of an uncertain state. For any state-dependent utility u : Θ−i →

R, the subjective expectation is denoted as E−iu =
∫
θ−i∈Θ−i

u(θ−i)G(dθ−i). With

wishful thinking, beliefs are distorted towards favorable events. This is captured

by a positive non-decreasing distortion function δ, and the distorted expectation

becomes Eδ
−iu =

∫
θ−i∈Θ−i

u(θ−i)δ(u(θ−i))G(dθ−i). For any random variable x defined

on (Θ−i,Bn−1, G), the distorted expectation Eδx represents the expectation of x under

the distribution Gδ, where Gδ(dθ−i) = δ(x(θ−i))G(dθ−i). Further discussion on the

distortion will be provided in the following subsection.

The seller aims to maximize the expected payment by selecting a direct mech-

anism. Each bidder i submits a report θ̂i to the seller, and based on the profile of

reports θ̂ = (θ̂1, ..., θ̂N), the mechanism determines the probability of winning and the

payment for each bidder, denoted as Qi(θ̂), Ti(θ̂)i ∈ N . The mechanism is anonymous

with respect to bidders, meaning that for bidder i and j, when (θi, θ−i) = (θj, θ−j),

we have Qi(θi, θ−i) = Qj(θj, θ−j) and Ti(θi, θ−i) = Tj(θj, θ−j).
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To emphasize the uncertainty of other types of an agent, we treat the mechanism

as a pair of random variables, Q and T. Both take an agent’s report as input and

return a random variable defined on the probability space of others’ reports. The

schedule Q maps reports, θi, to a real random variable Q(θi) that defines the winning

probability conditional on others report θ−i. Similarly T maps a report, θi, to a

real random variable T(θ) that the payment conditional on others report θ−i. The

set Q denotes the measurable functions with range [0, 1] defined on the probability

of others’ types, Q = {q : Θ−i → [0, 1]|q is measurable}; the set T denotes the

measurable functions with range [0, t̄] defined on the probability of others’ type, T =

{t : Θ−i → [0, t̄]|t is measurable}. A mechanism is denoted as (Q,T), Q : Θi → Q

and T : Θi → T . With mechanism (Q,T), a type θi agent reporting θ̂i will have

a random utility, U(θ̂i, θi|Q,T) = u(Q(θ̂i),T(θ̂i), θi). When the mechanism is clear

from the context, we will omit the notation Q,T.

The mechanism is feasible when the typical Bayesian Incentive Compatible (BIC),

Individual Rationality (IR), and Plausibility (P) holds.

∀θi, θ′i ∈ Θ, θ′i ̸= θi : Eδ
−i{U(θi, θi)} ≥Eδ

−i{U(θ′i, θi)}, (BIC)

∀θi ∈ Θ : Eδ
−i{U(θi, θi)} ≥0, (IR)

∀(θ1, ..., θn) ∈ Θn
∑
j∈N

Q(θj, θ−j) ≤ 1, and ∀i ∈ N : Q(θi, θ−i) ≥ 0, (P)

where Q(θi, θ−i) = Q(θi)(θ−i).
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4.1 Incorporating Wishful Thinking

We first clarify how wishful thinking is modeled in this setting. In an auction, there

are two sources of uncertainty. The randomness of others’ reports θ̂−i, and given a

report the mechanism may further give a randomized allocation Q(θ̂i, θ̂−i) ∈ (0, 1).

We assume that WT only distorts a bidder’s beliefs about others’ reports, not the

way the mechanism works.2

We study two forms of WT axiomatized in Kovach (2020): the best-case binary

distortion and the consequential distortion. In both cases, real random variables

(acts) (e.g., x defined on probability space (Ω,Σ, F )) are evaluated by the distorted

expectation Eδx = Exδ(x). The distortion δ is an increasing function that cap-

tures wishful thinking. The best-case wishful thinker increases the probability of the

best-case scenario by determining other cases’ probability proportionally, while the

consequential wishful thinker reweighs the probability density of each event by a dis-

tortion function and renormalizing afterward. The distortion function is increasing

in utility to capture wishful thinking:

1. Best-case binary distortion:

δ(U(θ̂i, θi)(θ−i)) =


1− δ if θ−i ̸∈ B(θ̂i, θi),

1− δ + δ 1

G(B(θ̂i,θi))
if θ−i ∈ B(θ̂i, θi),

B(θ̂i, θi) is the θ−i’s that give the maximum utility for type θi with report θ̂i.

δ ∈ (0, 1) is some constant.3 Alternatively, one may think of the distorted belief

2This is in line with experimental evidence suggesting that wishful thinking arises more frequently
in subjective or ambiguous environments (such as competitions), rather than games of objective
chance (such as roulette). (Krizan and Windschitl, 2007).

3In its most general form, δ is not a constant but depends on the act (report) and type. As we
focus on truthful reporting cases, it should depend on the type. We assume all types have the same
level of distortion for simplicity here.
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as Gδ = (1 − δ)G + δD, a convex combination between correct belief G and

some distortion belief D different from G. In this example, D is given by a

uniform distribution over “best case types,” which could be discrete. With this

definition, we extend the best-case binary distortion to the cases of discrete best

cases.

2. Consequential distortion:

δ(U(θ̂i, θi)) =
v(U(θ̂i, θi))

E−iv(U(θ̂i, θi))
,

where the distortion function v is a continuous and increasing function.

Note that bidders have correct beliefs when they have no stake in the game (or

choose a constant act). This reflects the nature of wishful thinking, which distorts

“subjective” events optimistically but does not distort objective lotteries.

We only require that the distorted preference is monotonic with respect to First

Order Stochastic Dominance (FOSD). Note that the utility function depends on the

mechanism so that we denote the distortion as δ(θ−i|θ̂i, θi, Q, T ) := δ(U(θ̂i, θi)(θ−i)),

and the partial derivative of it with respect to the truth type as δθ(θ−i|θ̂i, θi,Q,T) =

∂δ(θ−i|θ̂i,θi,Q,T)
∂θi

. As a random variable defined on Θ−i denoted as δθ(U(θ̂i, θi)).

4.2 The Envelope Theorem and Its Converse

The primary tools used in this paper are the generalized envelope theorem by Mil-

grom and Segal (2002) and its generalized version with converse by Sinander (2022).

We also make reference to the work of Myerson (1981), which characterizes feasible

mechanisms in private value auctions with quasi-linear utility.

In a private value auction with quasi-linear utility, Myerson (1981) characterizes
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the feasible mechanisms based on the monotonicity of allocation, envelope formulas,

individual rationality for the lowest type, and plausibility conditions. With these

characterizations and a regularity assumption to ensure the monotonicity of alloca-

tion, the envelope theorem and individual rationality are equivalent to the expression

ET(θ) =
∫ θ

θ′=0
EQ(θ′)dθ′ − EQ(θ)θ. Consequently, the expected payment in the rev-

enue maximization problem can be replaced by a function of the expected allocation.

In mechanism design, the choice set can be arbitrary, and the traditional envelope

theorem does not hold. Milgrom and Segal (2002) provide a general version of the

envelope theorem that holds for an arbitrary choice set. It is well known that outside

of the quasi-linear context, the converse envelope theorem is needed to characterize

feasible mechanisms. Sinander (2022) provide a generalized envelope theorem with

a converse counterpart. They establish an implementability theorem using this the-

orem, which is a generalized version of the single crossing property with increasing

allocation.

In our context, given a mechanism (Q, T ), a bidder with type θi maximizes their

distorted expected utility by choosing their report. We denote the maximum utility

as V (θi) = maxθ̂i∈Θ EδU(θ̂i, θi) = f(θ̂i, θi). The optimal report for type θi is denoted

as θ̂∗(θi).

4.3 Stochastic Ordering

In order to define an increasing allocation, it is necessary to properly order the allo-

cation space. We utilize three stochastic orders that are particularly relevant for our

analysis. These orders are integral stochastic orders, which are generated by specific

sets of real-valued functions denoted as F . For random vectors X and Y, the order

X ≥F Y holds when E[f(X)] ≥ E[f(Y)] for every function f in the set F for which
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the expectation exists.

The increasing convex order (≤icx) is generated by the set of all increasing convex

functions. This order measures variability, as convex functions emphasize the tail of

the distribution. The convex order (≤cx) is generated by the set of convex functions,

and it is the multivariate generalization of a mean-preserving spread. The standard

order (≤st) is the integral stochastic order generated by the set of bounded increas-

ing functions and serves as the multivariate generalization of first-order stochastic

dominance.

We list a few properties of these stochastic orders, all of which can be found in

Müller and Stoyan (2002) and Shaked and Shanthikumar (1994):

P0 If X ≤cx Y, then X ≤icx Y and X ≤st Y.

P1 If X ≤icx Y, there exist random vectors Z and Z′ such that X ≤st Z ≤cx Y

and X ≤cx Z′ ≤st Y.

P2 For X ≤icx Y, there exist random vectors X̂ and Ŷ (defined on the same

probability space) such that X̂ = stX, Ŷ = stY, and EŶ|X̂ ≥ EX̂ almost

surely. This implies that (X̂, Ŷ) forms a submartingale.

P3 For random vectors X and Y:

(a) If X ≤icx Y, then E[X] ≤ E[Y].

(b) If X ≤st Y, then E[X] ≤ E[Y].

(c) If X ≤cx Y, then E[X] = E[Y].

In the next section, we demonstrate that the expectation operator is additive for the

best-case distortion. As a result, the Myerson-type characterization of optimal mech-

anisms can be applied. Although the expectation is not additive for the consequential
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distortion, the insights gained from the best-case distortion still hold. In both cases,

the optimal auction resembles a variant of the Sad-loser auction initially introduced

by Riley and Samuelson (1981).

5 Optimal Auction with Best-case Binary Distor-

tion

Assuming a regular distribution4, which is common in the mechanism design liter-

ature, we establish two Lemmas that enable a Myerson-type characterization. The

first lemma demonstrates the stability of the best case under a slight change in type,

while the second lemma shows the uniqueness of the allocation and payment within

each best case. Both lemmas rely on the continuity of the utility function.

Lemma 1. B(θ̂, θ) = B(θ̂, θ + ϵ) and E−iU(θ)δθ(U(θ) = 0.

Proof. Fix a report θ̂. By definition, θ−i ∈ B(θ̂, θ) if for every θ′−i ̸∈ B(θ̂, θ),

Q(θ̂, θ−i)θ−T (θ̂, θ−i) > Q(θ̂, θ′−i)θ−T (θ̂, θ′−i). This implies that for a small enough

ϵ, Q(θ̂, θ−i)(θ+ϵ)−T (θ̂, θ−i) > Q(θ̂, θ′−i)(θ+ϵ)−T (θ̂, θ′−i). Hence, θ−i ∈ B(θ̂, θ+ϵ).

Since the best case remains unchanged for small changes in type, we conclude that

δθ ≡ 0.

Lemma 2. For every θ−i, θ
′−i ∈ B(θ̂, θ), Q(θ̂, θ−i) = Q(θ̂, θ′−i) =: Q̄(θ̂, θ) and

T (θ̂, θ−i) = T (θ̂, θ′−i) =: T̄ (θ̂, θ).

Proof. For θ−i, θ′−i ∈ B(θ̂, θ), we have Q(θ̂, θ−i)θ − T (θ̂, θ−i) = Q(θ̂, θ′−i)θ −

T (θ̂, θ′−i). The previous Lemma shows B(θ̂, θ) = B(θ̂, θ + ϵ), which also implies

that Q(θ̂, θ−i)(θ + ϵ) − T (θ̂, θ−i) = Q(θ̂, θ′−i)(θ + ϵ) − T (θ̂, θ′−i). Combining both

4ψ(θ) = θ − 1−F (θ)
θ , where ψ is a monotone non-decreasing function
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conditions gives Q(θ̂, θ−i) = Q(θ̂, θ′−i) and T (θ̂, θ−i) = T (θ̂, θ′−i). We denote them

as Q̄(θ̂, θ), T̄ (θ̂, θ). When θ̂ = θ, we denote them as Q̄(θ), T̄ (θ).

With these two Lemmas, we can apply a Myerson-type characterization of opti-

mal mechanisms to auctions with best-case binary distorted bidders. We define the

distorted expected winning probability as q(θi) = (1 − δ)E−iQ(θi) + Q̄(θi)δ. Simi-

larly, we define the distorted expected payment as t(θi) = (1 − δ)E−iT(θi) + T̄ (θi)δ.

Consequently, V (θ) = q(θ)θ − t(θ). We can rewrite the BIC condition as V (θ) =

V (0) +
∫ θ

0
q(x)dx. IR and profit maximization require V (0) = 0. Expanding V (θ)

gives:

t(θi) = q(θi)θi −
∫ θi

0

q(x)dx. (1)

Equation (1) summarizes BIC and IR.

The seller’s objective is to maximize the expected revenue. Rearranging t(θi) and

combining it with equation (1) gives the expected payment for type θi:

E−iT(θi) =E−iQ(θi)θi −
∫ θi

x=0

E−iQ(x)dx+
δ

1− δ

(
ū(θi)−

∫ θi

x=0

Q̄(x)dx

)
,

where ū(θ) = Q̄(θ)θ − T̄ (θ). The expected revenue from a bidder i is given by:

∫ 1

θi=0

E−iT(θi)F (dθi) =

∫ 1

θi=0

E−iQ(θi)ψ(θi)F (dθi)

+
δ

1− δ

∫ 1

θi=0

(Q̄(θi)ψ(θi)− T̄ (θi))F (dθi),

where ψ(θi) = θi − 1−F (θi)
f(θi)

is the virtual valuation when the bidder is unbiased.

Observation 1. When the transfer to the mechanism is unbounded, the seller can

achieve arbitrarily large revenue. In other words, as T̄ (θi) → −∞,
∫ 1

θi=0
E−iT(θi)dF (θi) →

16



∞.

This is because the mechanism designer can directly offer the bidder a chance to

place a bet on another player’s type. Since bidders have biased beliefs, the mechanism

designer can achieve unbounded profit by offering an unfair lottery to the biased

bidders, which may have nothing to do with the good itself. To focus on the incentive

for obtaining the good and exclude such cases, we restrict the transfer to be positive,

i.e., ∀θ ∈ ΘN : T (θ) ≥ 0.

The expected revenue is decreasing in T̄ (θi). The optimal mechanism has T̄ (θi) =

0. This provides a Myerson-type characterization of payment. The expected revenue

per bidder is:

∫ 1

θi=0

E−iT(θi)F (dθi) =

∫ 1

θ=0

(
E−iQ(θi) +

δ

1− δ
Q̄(θi)

)
ψ(θi)F (dθi). (2)

Observation 2. The first term,
∫ 1

θ=0
E−iQ(θ)ψ(θ)F (dθ), represents the revenue when

the bidders are unbiased. Therefore, bias increases the seller’s revenue. The second

term,
∫ 1

θ=0
δ

1−δ
Q̄(θ)ψ(θ)F (dθ), represents the surplus induced by the WT bias. It is

increasing in δ. As a result, the more biased the bidders are, the more revenue the

seller can generate.

Observation 3. There is no restriction on B(θi).

As the type distribution is regular, a simple solution is as follows:

Qi(θi, θ−i) = 1 ⇔ ∀j ̸= i : θi > θj, and ψ(θi) ≥ 0,

Qi(θi, θ−i) =
1

N̄
⇔ ∀j ̸= i : θi ≥ θj, and ψ(θi) ≥ 0,

Qi(θi, θ−i) = 0 ⇔ ∀j ̸= i : θi < θj, or ψ(θi) < 0,

17



If ψ(θi) < 0, the bidder never wins and must have zero transfer, so the best case is

B(θi, θi) = Θ−i. For other cases, since there is no restriction on B(θi, θi), one can

freely choose some B ⊂ [0, θi)
N−1 to make it the best case. The payment is given by

equation (1) with T̄ (θ) = 0. Here, N̄ is the number of bidders submitting the same

highest report. When there are multiple bids with positive virtual valuations, the

good is allocated to the bidder with the highest valuation.

To see that the optimal mechanism has a loser-pay feature, consider a bidder i.

In the best case, bidder i obtains the good for free and only has to pay in other cases.

Thus, this is a sad-loser auction in the best case, which is the case where the bidder

has wishful thinking and distorted beliefs.

5.1 Implementation: SPAr with Sad-loser Lottery

A Second Price Auction (SPA) with a reservation price and an additional lottery can

easily implement the above mechanism. For simplicity, let’s consider the case of 2

bidders with uniformly distributed valuations θ ∼ U [0, 1], where types are distributed

independently. In this case, the virtual valuation is ψ(θi) = 2θi − 1. We choose the

best case as the other bidder reporting zero, B(θi, θi) = 0.

Consider a Second-Price Auction with a reservation price of 1
2
, where the seller

withholds the good if either bidder bids zero. In SPAr, revealing the truth is still

weakly dominant. The revenue in auctions with Expected Utility Theory (EUT)

bidders is given by:

ΠSEU =
∑

i∈{1,2},j ̸=i

(∫ 1

0

∫ 1

0

(2θi − 1)Qi(θi, θj)dθjdθi

)
.

It is worth noting that the optimal mechanism for auctions with EUT bidders

can be implemented by an SPA with a reservation price of 1
2
, denoted as ΠEUT* =
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ΠSPAr,EUT. The SPAr, where the seller withholds the good when either bidder has

a zero valuation, yields the same revenue, i.e., ΠSPAr,WT = ΠSPAr,EUT. Equation (2)

shows that the revenue could be improved by:

ΠWT − ΠSEU =
∑

i∈{1,2}

(
δ

1− δ

∫ 1

0

(2θi − 1)Q(θi, 0)dθi

)
.

The optimal mechanism gives Q(θi, 0) = 1 if θi >
1
2
and zero otherwise. Thus, the

potential improvement is
∑

i∈1,2
δ

4(1−δ)
. To extract this surplus, an extra lottery is

offered to each bidder.

Recall that the seller withholds the good if either bidder has a zero valuation. The

seller could offer a sad-loser lottery L(x) to bidders conditional on this event. The

lottery holder obtains the good for free if the other bidder bids zero (the best case)

and pays x otherwise. Bidders with valuations greater than (1−δ)
δ
x accept the lottery.

The lottery represents a bet on a null event. Whenever the lottery is accepted, the

revenue is improved by x. For each bidder, the expected revenue from the lottery is:

ΠL(x) =

∫ 1

(1−δ)
δ

x

xdθ = x− 1− δ

δ
x2.

The revenue is maximized when x = δ
2(1−δ)

:= x∗. The expected revenue for each

bidder is ΠL(x∗) = δ
4(1−δ)

. All possible improvements have been explored. This proves

that the SPA with a reservation price of 1
2
and the additional sad-loser lottery L(x∗)

is revenue maximizing.

5.2 The Mechanism Behind the Sad-loser Lottery

This section explores how the sad-loser lottery improves the seller’s revenue, particu-

larly in the context of wishful thinking (WT) bidders. The lottery is profitable when
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bidders have biased beliefs, and the revenue is higher when the payment is conditional

on loss, an underweighted event.

The figure below illustrates the lottery from the perspective of wishful thinking

bidders, Subjective Expected Utility (SEU) maximizing bidders, and the seller. For

wishful thinkers, the perceived gain of the lottery is δθi > 0, and the perceived cost

is (1 − δ)x. Bidders with valuations θi greater than
δx

(1−δ)
find the lottery profitable

and accept it. EUT bidders, on the other hand, do not find the lottery profitable and

reject the offer. Since the actual probability of winning is zero, it is free for the seller

to provide the lottery. Anyone who accepts the lottery increases the seller’s revenue

by x.

0

θi

bj = 0
δ

−x

bj >
0

1−
δ

(a) Perceived payoff for WT bidders

0

θi

bj = 0
0

−x

bj >
0

1

(b) Payoff for EUT bidders

0

0

bj = 0
0

x

bj >
0

1

(c) Payoff of the seller

Separating the case of receiving the good from paying the lottery fee always in-

creases surplus, with the subjective expected payment remaining unchanged. SEU

bidders are indifferent between paying x conditional on loss or unconditionally. How-
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ever, wishful thinkers prefer paying x conditional on loss since they underweight the

probability of loss. There is a perceived discount of δ on the payment when it is sepa-

rated from the best case. If the lottery’s payment is made unconditionally, the lottery

only yields the seller an expected revenue of δ
4
per bidder, which is suboptimal. A

similar effect also arises in the winning case. Wishful thinkers have a biased perceived

gain of δx from the sad-loser lottery as they overestimate the winning probability.

Thus, the sad-loser feature improves revenue for mechanisms targeting wishful think-

ing bidders. The next section demonstrates that this intuition remains valid in the

more general case of consequential distortion.

The mechanism is robust in markets with both best-case binary WT and SEU

bidders. SEU bidders reject any lottery that is not in their favor, while wishful

thinkers accept the lottery. We separate WT bidders from EUT bidders, even if the

bidders themselves fail to recognize their bias. However, to offer the optimal sad-loser

lottery, the seller must know the parameter δ.

6 Consequential Wishful Thinking

This section examines the auction problem with wishful thinking (WT) modeled

by the more general consequential distortion. We demonstrate that under a mild

condition on the shape of the distortion function v, the optimal mechanism is a

variant of the loser-pay auction, and the bias increases the seller’s revenue.

We require the distortion function to satisfy the following condition:

∀u ≤ 1 : v′′(u) ≤ 2v′(u) + uv′′(u). (3)

This condition ensures that the agent’s preference is monotonic with respect to
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first-order stochastic dominance (FOSD).5 It also guarantees a convex distorted ex-

pected utility.

Lemma 3. The distorted preference satisfies FOSD when

∀u ≤ 1 : v′(u) ≤ v(u) + uv′(u). (4)

The condition (4) is always satisfied when u = 1 since v > 0. By the Fundamental

Theorem of Calculus, (3) can be seen as a smooth version of (4).

Before delving into the problem of the optimal auction with wishful bidders, let us

review some basic properties of consequential distortion. Based on these properties,

we will define the maximum spread auction, which intuitively should be the optimal

auction. Finally, we will prove that it is indeed the case under certain assumptions.

First, we observe that wishful thinkers prefer a spread.

Lemma 4. Given a set of acts (reports) with the same subjective (unbiased) expected

payoff, wishful thinkers prefer the one with a greater spread.

Proof. Define the function ϕ(u) = uv(u). Then, the distorted expectation for a

random variable (act) u can be written as Eϕ(u)
Ev(u) . Approximating the value of the

distorted expected value around the mean gives:

Eδu =
Eϕ(u)
Ev(u)

≈ ϕ(Eu) + ϕ′′(Eu)V ar(u)
v(Eu) + v′′(Eu)V ar(u)

.

Since (3) ensures ϕ′′ > v′′, for two random variables u and u′ with u′ being the

mean-preserved spread of u, V ar(u′) > V ar(u). Thus, Eδu′ > Eδu.

The agent’s beliefs are increasingly biased toward events with good outcomes.

5For random variables X and Y , if X first-order stochastically dominates Y (X >st Y ), then the
agent prefers X over Y (X ≻ Y ).
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Whenever there is a spread between good and bad events, while keeping the expected

outcome unchanged, the agent will believe that she is more likely to win and likely to

pay less. Since the maximum utility for a type θ agent is θ, and the minimum payoff

is −t̄, a maximum exists for every distribution of states (others’ types).

Figure 1 provides an intuitive explanation. The black curve represents the state-

dependent random utility u(θ−i), and the red line depicts the mean-preserved devi-

ation u′(θ−i) of u(θ−i). Suppose that for every θ+−i ∈ Θ+
−i and θ−−i ∈ Θ−

−i, u(θ
+
−i) >

u(θ−−i). By increasing u(θ−i) in Θ+
−i by a fixed amount ∆ while preserving the mean,

we can reduce u(θ−i) in Θ−
−i by ∆

G(Θ−
−i)

G(Θ+
−i)

. Since u′(θ−i) in Θ+
−i is increased, while

u′(θ−i) in Θ−
−i is decreased, the distorted agent further increases the distorted prob-

ability assessment on Θ+
−i and decreases those on Θ−

−i. As a result, the distorted

utility for u′ is greater than u. By continuing to increase the distorted utility through

the selection of two regions and increasing the spread, two possible cases emerge.

The support of the utility function is either θ, 0,−t̄ or θ, θ − t̄,−t̄. Figures 2 and 3

illustrate these two cases.

θ−i

y

y = u(θ−i)

u′(θ−i)

u′(θ−i)

Θ−
−i

Θ+
−i

Figure 1: Mean-preserved Spread of u that increases the distorted expectation.

This provides intuition as to why the loser-pay auction is optimal in the previous

section. Naturally, it offers the maximum spread to the agent. The seller has no
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preference for the distribution of the winning probability and the payment for any

report. At the same time, the bidder prefers the one that offers the greatest spread to

the generated random utility. We consider the case where some report does not pro-

vide the maximum spread to the bidder as a potential for Pareto improvement. The

seller could extract the surplus from the improvement with an appropriate mecha-

nism. Thus, we formally define the maximum spread report and the maximum spread

auction and then show their optimality under certain additional assumptions.

Definition 1 (Maximum spread report). Given a mechanism Q,T, a report θ is a

maximum spread report when the random utility it generates for the corresponding

type, U(θ) = θQ(θ)−T(θ), is ≥cx-maximum among the mechanisms Q′,T′ that give

the same expected winning probability and payment for θ, i.e., E−iQ
′(θ) = E−iQ(θ)

and E−iT
′(θ) = E−iT(θ).

The maximum is well-defined as the support is bounded.

θ−i

y

u(θ−i) = −t̄

u(θ−i) = 0

u(θ−i) = θ

Figure 2: Case 1: Support of the utility function is θ, 0,−t̄.

Definition 2 (Maximum spread auction). A mechanism is called a maximum spread

auction when all reports are maximum spread reports.
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θ−i

y

u(θ−i) = −t̄

u(θ−i) = θ − t̄

u(θ−i) = θ

Figure 3: Case 2: Support of the utility function is θ, θ − t̄,−t̄.

This means that there are functions α, β : Θ → [0, 1] such that

G[θ−i : Q(θ, θ−i) = 1 and T (θ, θ−i) = 0] = 1− β(θ),

G[θ−i : Q(θ, θ−i) = 0 and T (θ, θ−i) = t̄] = 1− α(θ),

G[θ−i : Q(θ, θ−i) = 1 and T (θ, θ−i) = t̄] = (α(θ) + β(θ)− 1)+,

G[θ−i : Q(θ, θ−i) = 0 and T (θ, θ−i) = 0] = (1− α(θ)− β(θ))+,

where (z)+ = max z, 0. Here, α(θ) is the probability of getting the goods, and

β(θ) is the probability of paying the whole budget.

A necessary condition is that for every θi ∈ Θ, θ−i ∈ Θ−i:

Q(θi, θ−i) ∈ 0, 1 T (θi, θ−i) ∈ 0, t̄.

The maximum spread auction is a variation of the sad-loser auction, which, in

turn, is a variation of an all-pay auction. Our main theorem shows that it is optimal
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when the budget is large, and the expected winning probability schedule is increasing.

Theorem 1 (Main Theorem). When the budget is large and the expected winning

schedule, E−iQ, is an increasing function, the optimal mechanism is of maximum

spread.

An immediate corollary of the theorem is the following.

Corollary 1 (Main Theorem (Alternative)). When the budget is large, the optimal

efficient mechanism is of maximum spread.

To prove the main theorem, we will show that when the allocation schedule in-

creases, individual rationality (IR) is met for the lowest type, and the envelope formula

is satisfied and plausible, then the mechanism is feasible. We will mainly demonstrate

that IR for the lowest type implies IR for all types, and we define the allocation space

and order in such a way that the Spence-Mirrlees condition implies that when the

envelope formula holds, the Bayesian incentive compatibility (BIC) condition also

holds.

Proposition 1. When condition (3) holds, for any mechanism that satisfies BIC,

V (0) ≥ 0 ⇒ ∀θ ∈ Θ : V (θ) ≥ 0 (IR is satisfied).

Proof. Note that the same report from a higher type first-order stochastically dom-

inates the same report from lower types. By Lemma 2, (3) implies that for every

type θi, Eδ
−iU(0, θi) ≥ Eδ

−iU(0, 0). BIC requires E−iU(θi, θi) ≥ E−iU(0, θi). As V is

increasing, V (0) ≥ 0 ⇒ ∀θ ∈ Θ : V (θ) ≥ 0.

Proposition 1 replicates the result in Myerson (1981) that the IR constraint only

restricts the initial value of the envelope formula. Next, we construct the imple-

mentability theorem as in (Sinander, 2022) in our context. With the implementability
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theorem, any increasing allocation is implementable: there is a payment schedule such

that the mechanism is BIC. The payment schedule and the allocation must jointly

satisfy the envelope formula.

Next, we give an implementability theorem. The implementability theorem iso-

lates payment, which the seller cares about, from allocations, for which the bidder

has a preference. In our context, the bidders have a preference over the distribution

of payment. Thus, we extend the allocation space to include the distribution of both

payment and winning probability. For a mechanism Q,T, we separate the expected

payment from its distribution by defining functions τ,P from the payment schedule

T. τ : Θ → [0, k] is the expected payment schedule, τ = ET. P : Θ → R+ is

the proportion of the expected payment schedule, P = T
τ
. When τ = 0, which im-

plies T = 0, we define P = 0. The allocation schedule of a mechanism is denoted as

Y = (Q,P). Thus, a mechanism can be written as M = (Q,T) = (Q,P, τ) = (Y, τ).

The allocation space and payment space are defined as Y = Q×P and P , respectively.

We order the allocation space Y by the following order ≥Y . For y,y′ ∈ Y , with

y = (q,p) and y′ = (q′,p′), we have y′ ≥Y y if (p′,−t′) ≥icx (p,−t).

The implementability theorem of (Sinander, 2022) suggests that if Y is regular

and the payoff function f satisfies the outer Spence-Mirrlees condition, then any

increasing allocation is implementable.

6 7 and f satisfies the outer Spence-Mirrlees condition 8, then any increasing

6The outcome space Y is regular iff it is order-dense-in-itself, countably chain-complete and
chain-separable.

7For payoff function f that maps allocation, y, payment, p, and type, t, to payoff, f(y, p, t). f
is regular iff (i) the type derivative f3 exists and is bounded, and f3(y, ·, t) is continuous for each
y ∈ Y and t ∈ [0, 1], and (ii) for every chain C ⊆ Y, f is jointly continuous on C × R× [0, 1] when C
has the relative topology inherited from the order topology on Y.

8f satisfies the (strict) outer Spence-Mirrlees condition iff for any increasing Y : [0, 1] → Y, any
τ : [0, 1] → R and any r < t in (0, 1),

n 7→ d̄

d̄m

∫ t

r

f(Y(s+m), τ(s+m), s+ n)ds

∣∣∣∣
m=0
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allocation is implementable9.

The Spence-Mirrlees condition is a single crossing property on the payoff function

that interprets as the higher type is more willing to pay for an increase in allocation.

In the appendix, we show that if we focus on a restricted set of mechanisms, the outer

Spence-Mirrlees condition holds.

The restricted set of the mechanism is such that for every θ′ > θ, Y(θ′) =

(q′,p′), τ(θ′) = t′,Y(θ) = (q,p), τ(θ) = t, Û(θ) = qθ − tp:

E−i{ϕ′(Û(θ))(q′ − q)} ≥ E−i{[ϕ′′ − v′′](Û(θ))qp}(t′ − t) for every θ ∈ [0, 1]. (5)

To see why this restriction is needed, we could focus on the right-hand side of

the inequality. When q and p have separated support, the right-hand side is equal

to zero. (5) holds by the property O2. When the support for payment and winning

is mixed, there are two effects of increasing type on the willingness to pay. First,

the higher types have a greater valuation for winning, thus giving a more distorted

probability assessment and expected value. On the other hand, when the support for

payment and winning are overlapped, higher types have greater utility for the region of

payment, thus increasing the distorted expected payment. As a result, the aggregate

effect is ambiguous. The second effect reduces when the payment and winning are less

aligned, E−iqp reduces. We say the mechanism has sufficiently separated regions of

winning and payment if (5) holds. This gives the following implementability theorem.

Proposition 2. Any mechanism with sufficiently separated regions of winning and

payment with increasing allocation is implementable.

is (strictly) single-crossing, where d̄/d̄m denotes the upper derivative.
9An allocation Y : [0, 1] → Y is implementable iff there is a payment schedule τ : [0, 1] → R such

that (Y, τ) is incentive-compatible. An increasing allocation is one that provides higher types with
larger outcomes (in the partial order on Y).
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With the implementability theorem in hand, we could fix any increasing allocation

and look for the payment schedule using the envelope formula. When 5 holds, the

result mechanism must be BIC.

Next, we solve the problem of determining which mechanism with an increasing

allocation is optimal. We seek a profitable deviation for feasible mechanisms that are

not of maximum spread. Since the agent prefers spread, the target deviation is to

increase the spread for the mechanism. We think of this as a Pareto improvement

and then seek a mechanism to extract the generated surplus.

First, we show that for any increasing allocation with some non-maximum spread

reports, we can replace those reports with reports of greater spread. The resulting

allocation is still increasing, so increasing the spread does not change the monotonicity

of the allocation.

Lemma 5. For a mechanism with an increasing allocation that has reports that are

not of maximum spread, there is another mechanism with an increasing allocation but

with increased spread for the non-maximum spread reports in the original mechanism.

Proof. Suppose the increasing mechanism is y1 ≤icx y2 ≤icx y3 with y2 not of max-

imum spread. Then, by property O1, there exists z ̸=st y2 such that y1 ≤icx y2 ≤cx

z ≤st y3. As y1 ≤icx z ≤st y3, there exists z′ such that y1 ≤cx z′ ≤st z ≤st y3. Note

that there is an interval between z and z′ in the st order where we can replace y2

with some y′
2 between z and z′ in the st order. We can choose the one with a higher

spread, y′
2 ≥cx y2.

Next, we show that when we disregard the monotonicity constraints, the seller

would always want to offer a mechanism with maximum spread.

Lemma 6. If U(θ|Q′, T ′) ≥cx U(θ|Q, T ), then fθ(θ|Q′, T ′) > fθ(θ|Q, T ), and fθ(θ)

is an increasing function.
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The lemma shows that when we replace a non-maximum spread report with one

that has more spread, both the indirect utility and its slope increase.

Lemma 7. V (θ|Q,T) and fθ(θ|Q,T) are increasing in the probability of winning

schedule Q(θ) and decreasing in the payment schedule T(θ), both ordered by first-

order stochastic dominance (the st order). For changes in Q or T that have the same

impact on the resulting random utility, U(θ|Q′,T) = U(θ|Q,T′), the relative impact

on V and fθ is different.

For a fixed θ, let q = Q(θ) and t = T(θ). V (q, t) = V (θ) and fθ(q, t) = fθ(θ).

For a functional F that takes functions a and b as inputs, let η be the derivative of F

with respect to a, i.e., F η
a (a, b) = limϵ→0

F (a+ϵη,b)−F (a,b)
ϵ

. For every ηq ≤ 0 and ηt ≥ 0:

V ηq

q ≤0, fηqθ, q(q, t) ≤ 0,

V ηt

t ≤0, f ηtθ, t(q, t) ≤ 0.

For every η : Θ−i → R+,
V θη
q

f θη
θ,q

(q, t) ̸=V
−η
t

f−η
θ,t

(q, t)

Lemma 7 suggests that when we replace a non-maximum spread report with one

that has more spread, the value function increases. Lemma 8 shows that we can

reduce it back to the original value function by decreasing the probability of winning

or increasing the payment in the st order. In the first case, we have some free winning

probability to assign. We can assign it to the report that has the greatest payment,

giving more revenue to the seller as the report with the greatest payment becomes

more attractive. In the second case, it is obvious that the deviation is profitable. In

sum, Lemmas 7 and 8 show that when both mechanisms are feasible, the optimal

mechanism is the one with maximum spread.
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We return to the implementability condition that requires an increasing allocation

and (5) to hold. Given that the maximum spread auction is feasible when the budget

is large and the expected winning probability schedule is increasing, (5) naturally

holds. Also, note that the maximum spread auction with an increasing expected

winning schedule implies an increasing allocation, which proves our main theorem.

In conclusion, the main theorem states that when the budget is large and the

expected winning schedule is an increasing function, the optimal mechanism is of

maximum spread. The proof is feasible because if a mechanism satisfies the envelope

formula, and we have another mechanism that gives the same values of V (θ), fθ(θ)θ∈Θ,

the alternative mechanism also satisfies the same envelope formula. We find a process

in which the revenue increases while keeping the envelope formula unchanged, and

we show that the optimal mechanisms from the previous process are implementable.

θ

Eδ
−iu

Eδ
−iU(θ̂, θ,Q,T)

Eδ
−iU(θ̂, θ,Q′,T′)

θ = θ̂

Change θ̂ to an maximum spread report.

Eδ
−iU(θ̂, θ,Q′′,T′′)Reduce Q′ or increase T′ for θ̂.

Figure 4: The non-maximum spread report is not optimal.
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Figure 4 provides a conceptual understanding of the proof. The figure plots the

expected utility derived from a fixed report θ̂ = θ as a function of the true type

Θ. Given a mechanism (Q,T) which yields a non-maximum spread report θ, the

distorted expected utility (and similarly, the slope) is augmented by altering the

report θ to a maximum spread one in (Q′,T′). The seller can then seize the surplus by

suitably decreasing allocation and increasing payment such that the new mechanism

(Q′′,T′′) delivers the same expected utility function for report θ as found in the

original mechanism (Q,T). Consequently, the initial envelope formula applies, and

revenue surges, demonstrating that when the maximum spread auction is viable, it is

the optimal choice. The proof is finalized by illustrating that if the budget is ample

and the expected winning probability schedule is ascending, the maximum spread

auction is feasible.

6.1 Comparative Statics with Respect to the Level of Dis-

tortion

In this section, we examine how the revenue is affected by the level of distortion. First,

we compare the revenue between auctions with unbiased bidders and auctions with

wishful thinking (WT) bidders as a baseline. Recall that WT bidders make accurate

assessments of the probability of purely random events generated by the mechanism

but have distorted beliefs about others’ types. The optimal mechanism for selling to

unbiased bidders can be implemented as a constant mechanism for wishful thinkers by

absorbing the randomness from profiles and randomizing the allocation and payment

itself. As a result, the wishful thinker becomes unbiased. Therefore, the revenue

from auctions with WT bidders is weakly greater than the revenue from auctions

with unbiased bidders. This result is summarized in the following proposition.
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Proposition 3. The revenue of the seller in auctions with WT bidders is weakly

greater than that with unbiased bidders.

Next, we investigate how the revenue changes with the level of distortion. To do

this, we define the notion of “more distorted.”

Definition 3 (The distortion function v2 is more wishful than v1). v2 is more wishful

than v1 if, for any two random variablesX andY such thatX first-order stochastically

dominates Y,

Eδ(v2)X >Eδ(v1)X (6)

Eδ(v2)X− Eδ(v2)Y >Eδ(v1)X− Eδ(v1)Y (7)

These two conditions ensure that when v2 is more distorted than v1, the increase

in expected utility under distortion of v2 is greater than that under v1 (condition (6)).

Moreover, the increase in the spread of expected utility is also greater under v2 than

under v1 (condition (7)).

To understand how the revenue is affected by the level of distortion, consider

that if v2 is more distorted than v1, the distorted expected utility fθ under v2 is

greater than that under v1 due to condition (7). As a result, the seller can mimic

any mechanism for v1 under the context of v2 by reducing allocation and increasing

payments. This leads to the following proposition.

Proposition 4. The revenue is increasing in the level of wishfulness.

The proof is as follows: Suppose (Q, T ) is the optimal mechanism for less distorted

bidders with distortion function v1. Given the utility distribution V (θ), fθ(θ)θ ∈ Θ

that it generates, the same (Q, T ) will yield a greater utility distribution V (θ)′, fθ(θ)′θ ∈ Θ
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with more distorted bidders using v2. By Lemma 6, we can reduce it back to the orig-

inal utility distribution V (θ), fθ(θ)θ∈Θ by increasing T and reducing Q. With this

change, the new mechanism generates more profit and remains feasible.

As a corollary of the previous propositions, we can simplify the seller’s optimiza-

tion problem under the assumption of a large budget and an increasing expected

winning probability schedule, denoted as E−iQ:

Corollary 2. Under the assumptions of a large budget and an increasing expected

winning probability schedule, the seller’s optimization problem can be simplified as

follows:

max
a,b,c,d∈Θ[0,1]

∫
Θ

b(θ) + c(θ)F (dθ)t̄

s.t.

∫ θ

θ′=0

fθ(θ
′)dθ′ =

∑
p∈x p(θi)vp(θi)up(θi)∑

p∈x p(θi)vp(θi)
for every θ ∈ Θ,

fθ(θ) =

(∑
p∈w p(θ)(vp(θ) + up(θ)v

′p(θ))
)
(
∑
p ∈ xp(θ)vp(θ))

(
∑

p∈x p(θ)vp(θ))
2

−

(∑
p∈w p(θ)v

′p(θ)
)
(
∑
p ∈ xp(θ)up(θ)vp(θ))

(
∑

p∈x p(θ)vp(θ))
2

,

a+ b+ c+ d =1,∫
Θ

a(θ) + c(θ)F (dθ) =
1

N
, and d(0) = 1,

where a, b, c, d represent the probabilities of all possible cases, and x = a, b, c, d and

w = a, c represent the winning cases. The utility and distortion functions for each

case are denoted as up(θ) and vp(θ), respectively.

With consequential distortion, mechanisms that yield the same expected allocation

and payment for every type can result in different revenues. Therefore, the seller needs

to consider the profile-dependent utility distribution for each report. With the above
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propositions, the seller can focus on maximum spread auctions, and the problem

becomes assigning winning and losing probabilities for each type. Instead of choosing

(Q, T ) functions that map ΘN to [0, 1] and [0, t̄], the seller can focus on choosing

(a, b, c, d) functions that map types in Θ to probabilities in [0, 1]. This simplifies the

dimensionality of the problem. Another possibility is to use the (α, β) functions as

defined above, which further reduces the dimensionality of the problem but introduces

some non-smoothness due to the use of the (·)+ operator.

7 Discussion

Wishful thinking (WT) leads bidders in standard auctions to overestimate their

chances of winning, prompting underbidding as they underestimate competitors’ val-

uations. This miscalculation of payment expectancy reduces the potential surplus,

lowering the seller’s revenue. However, the implementation of sad-loser auctions can

reverse this trend, enabling the seller to profit from bidder bias. These auctions fur-

ther allow the mechanism designer to manipulate the level of distortion by adjusting

the outcome distribution. Thus, the more biased the bidders, the greater the seller’s

profit.

Sad-loser auctions, while not common in goods sales, appear frequently in con-

tracts and market structures like the ’loser pays attorney fees’ clauses and R&D

processes. This type of system, where ’the winner gets all,’ can incentivize WT indi-

viduals to participate. Whether this is beneficial depends on the designer’s objectives.

Given the correlation between optimism and traits like creativity (Rego et al., 2012),

risk-taking (Anderson and Galinsky, 2006), and procrastination (Sigall et al., 2000),

the implications vary. ’Loser-pays’ contracts may be unsuitable for hiring or loans

if WT individuals are prone to risky decisions, but may foster creativity in R&D

35



contests.

Our findings indicate that WT individuals underbid in private value auctions.

However, the literature suggests that bidders in common value auctions may suffer

from the winner’s curse, bidding above true value due to underestimated correlations

between others’ actions and information (Easley and Ghosh, 2015). Future research

could investigate how WT individuals behave in common value auctions when subject

to similar biases.
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A Appendix

Here we first provide 2 simple proof A.1 and A.2. that give intuition on how things

work. In A.3. we give a generalized proof that is the work horse for all other proofs,

which the generalized proof of A.1 and A.2 also nested in it.

A.1 Condition for FOSD (make sure V (0) ≥ 0 ⇒ V (θ) ≥ 0)

Suppose we have a payoff function, x(i), depends on some states i ∈ 1, ..., n, with

probability pi. For notaton ease we denote x(i) as xi, and x refers to {xi}ni=1. Now we

derive the condition under which the distortion function preserves the FOSD property

of the subjective utility. Suppose we have some positive deviation function depends

on states ϵ(i) ≥ 0 for each i and define a new lottery yi = xi + ϵi. Thus y ≥ x. We

restrict the domain of possible utility to be xi ∈ (−∞, 1].

If the distortion preserves FOSD we should have U δ(x) ≤ U δ(y).

U δ(x) =

∑n
i=1 v(xi)xipi∑n
i=1 v(xi)pi

, (8)

U δ(y) =

∑n
i=1 v(yi)yipi∑n
i=1 v(yi)pi

. (9)

By first order approximation of v around x in direction ϵ ≥ 0.

U δ(y) =

∑n
i=1 v(xi)xipi + (v(xi) + v′(xi)xi)piϵi + v′(xi)ϵ

2
i pi∑n

i=1 v(xi)pi + v′(xi)ϵipi
. (10)

Since xi ≤ 1,
∑n

i=1 v(xi)xipi ≤
∑n

i=1 v(xi)pi. This shows that

∀u : v(u) + v′(u)u ≥ v′(u) ⇔ ∀x ∈ (−∞, 1]n, ϵ small , p ∈ ∆(Rn) : U δ(x+ ϵ) ≥ U δ(x).

(11)
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The condition (11) always hold when u = ū = 1, which is the maximum utility

the agent can get from the goods. So,

∀u ≤ 1 : v′(u) ≤ v(u)

(1− u)
(12)

guarantee the FOSD after distortion. We require the sigthly stronger smooth version

of it:

∀u ≤ 1 : v′′(u)(1− u) ≤ 2v′(u). (13)

It places a restriction on how steep the v can be. Also, by second order approximation,

it make sure that the distorted utility is convex in lotteries .

Easy examples of the distortion function that satisfy all conditions are

1. v(u) = eu + c when u > 0 and v(u) = 1+ c when u ≤ 0, for some constant c, or

2. v(u) = au+ c, for some constant c : c ≥ a(1− 2u).

3.

v(u) =


eu when u ≥ 0

1
1−u

when u ≤ 0

With FOSD preserved distortion, the value function is increasing. Given a fixed

report and mechanism, the lottery generated by the report for higher types FOSD

that of lower types. Thus, given an report the utility is increasing in type, so does

the upper envelope of it.

What if the condition is not satisfied, take v(x) = ex as example, the conditin

fails at the negative region.
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x

y

y = v(x)

y = xv(x)

Observe that xv(x) may be decreasing in some regions, it may lead to cases where

the agent prefers the lotteries that are first-order stochastic dominated by the alter-

native lottery. The condition is just making sure that the slope and convexity of

xv(x) are always greater than that of v(x).

A.2 Proof: The maximum spread auction gives the highest

utility

Suppose the v curve is an increasing function and satisfies 3. Suppose given a distribu-

tion of utility, say U ∼ F , and there is a mean preserve deviation of the u. We seperate

U into three region U0, U+ and U−. Such that for every u+ ∈ U+, u− ∈ U−, u+ ≥ u−.

We construct a mean preserve deviation of U by adding some constant ∆ > 0 to

each u+ ∈ U+ and subtracting ∆F+

F−
from each u− ∈ U−, where F+ = F (U+) and

F− = F (U−).
∫
− du :=

∫
u∈U−

du;
∫
+
du :=

∫
u∈U+

du.
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∫
v(u′)u′F (du′)∫
v(u′)F (du′)

=

∫
v(u)uF (du) +

∫
(v′(u)u+ v(u))(u′ − u)F (du)∫

v(u)F (du) +
∫
v′(u)(u′ − u)F (du)

=

∫
v(u)uF (du) +

∫
+
(v′(u)u+ v(u))F (du)∆−

∫
−(v

′(u)u+ v(u))F (du)∆F+

F−∫
v(u)F (du) +

∫
+
v′(u)F (du)∆−

∫
− v

′(u)F (du)∆F+

F−

Then by 3, ∂2v(u)u
∂u2 ≥ ∂2v(u)

∂u2 , and U+ > U−. We have
∫
+
(v′(u)u + v(u))F (du)∆ −∫

−(v
′(u)u + v(u))F (du)∆F+

F−
≥

∫
+
v′(u)F (du)∆ −

∫
− v

′(u)F (du)∆F+

F−
, combine with

the fact that
∫
v(u)uF (du) ≤

∫
v(u)F (du). We know that

∫
v(u′)u′F (du′)∫
v(u′)F (du′)

>

∫
v(u)uF (du′)∫
v(u)F (du)

.

This means that whenever possible, by picking two regions Θ+
−i and Θ−

−i with

one utility greater than or equal to the other. The distorted expected utility can be

increased by a mean preserved spread that increases the utility of the greater utility

region Θ+
−i, and reduces those of lower utility region Θ−

−i.

The condition makes sure that the convexity of xv(x) is always greater than v.

Thus any mean preserved spread increases the distorted expected utility.
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x

y

y = v(x)

y = xv(x)

Suppose every agent has a fixed budget t ≥ 1. This in turn implies the optimal

auction must have the form:

Q(θi, θ−i) ∈ {0, 1}

T (θi, θ−i) ∈ {0, t}.

If there are some θ−i such that Q(θi, θ−i) = 1 and T (θ, θ−i) = t then there are no θ−i

such that Q(θi, θ−i) = 0 and T (θ, θ−i) = 0.

We let

G[θ−i : Q(θi, θ−i) = 1 and T (θi, θ−i) = 0] = a(θ)

G[θ−i : Q(θi, θ−i) = 0 and T (θi, θ−i) = t̄] = b(θ)

G[θ−i : Q(θi, θ−i) = 1 and T (θi, θ−i) = t̄] = c(θ)

G[θ−i : Q(θi, θ−i) = 0 and T (θi, θ−i) = 0] = d(θ).
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The logic behind is that, given an expected allocation q, and expected payment.

The consequential distortion makes a mean preserved spread always preferrible. This

makes there will always be a low chance of paying the maximum payment t. While

the losser region is fully occupied by payment t, the optimal auction will require some

region of winning to pay t also.

A.3 Generalized Proof of

1. If θ̂ = θ and u(θ̂, θ, Q′, T ′) ≻s u(θ̂, θ, Q, T ), then fθ(θ,Q
′, T ′) > fθ(θ,Q, T );

2. FOSD preserved when (4);

3. fθ(θ) increases when the type increase.

Notations: fix an type θ ∈ Θ, mechanism (Q, T ) and (Q′, T ′),

q(θ−i) :=Q(θ̂ = θ, θ−i), q′(θ−i) :=Q
′(θ̂ = θ, θ−i),

t(θ−i) :=T (θ̂ = θ, θ−i), and t′(θ−i) :=T
′(θ̂ = θ, θ−i).

u(θ−i) :=u(θ̂ = θ, θ−i; θ,Q, T ), ue(θ−i) :=u(θ̂ = θ, θ−i; θ + ϵ, Q, T ),

u′(θ−i) :=u(θ̂ = θ, θ−i; θ,Q
′, T ′), and u′e(θ−i) :=u(θ̂ = θ, θ−i; θ + ϵ, Q′, T ′).

∀x−i : Θ−i → R : denote
∫
−i
x−i :=

∫
θ−i∈Θ−i

x(θ−i)G(dθ−i). Also, ϕ(u) := v(u)u.

µ(θ) :=

∫
−i
ϕ(u−i)∫

−i
v(u−i)

, µ(θ + ϵ) :=

∫
−i
ϕ(ue−i)∫

−i
v(ue−i)

µ′(θ) :=

∫
−i
ϕ(u′−i)∫

−i
v(u′−i)

, and µ′(θ + ϵ) :=

∫
−i
ϕ(u′e−i)∫

−i
v(u′e−i)

.

We study variation in mechanism (Q, T ), (Q′, T ′) mean-preserving spread of (Q, T )
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for type θ, that q′ ≻s q, and u′ ≻s u.

We define the following variation funciton:

ue − u :=ϵηe, u′ − u :=ϵ′η′−i, and

u′e − u′ :=ϵη′e. Those implies u′e − u =ϵ′η′ + η′eϵ.

By definition η′e = q′, and ηe = q.

We take first order approximation of ϕ and v around u, with variation η’s as

defined as above. For ux = u + ηxϵ, for small ϵ.
∫
−i ϕ(u

x
−i)∫

−i v(u
x
−i)

=
∫
−i ϕ(u−i)+

∫
−i ϕ

′(u−i)η
x
−iϵ∫

−i v(u−i)+
∫
−i v

′(u−i)ηx−iϵ
.

With for random variable X, and Y , let C be the covariance function C(X, Y ) =

EXY − EXEY . Note that η′ = u′ − u, and u′ is the mean-preserving variation of u,

Eη′ =
∫
−i
η′−i = 0. Also, η′e = q′ and ηe = q, with q′ is an mean preserving spread of

q, Eη′e = Eq′ = Eq = Eηe.

We have

µ(θ) =
a

b
, µ(θ + ϵ) =

a+ e1
b+ e2

,

µ′(θ) =
a+ e3
b+ e4

, and µ′(θ + ϵ) =
a+ e3 + e5
b+ e4 + e6

,

where e1 = [Eϕ′(u)Eq+C(ϕ′(u), ηe)]ϵ, e2 = [Ev′(u)Eq+C(v′(u), ηe)]ϵ, e3 = C(ϕ′(u), η′)ϵ′,

e4 = C(v′(u), η′)ϵ′, e5 = [Eϕ′(u)Eq+C(ϕ′(u), η′e)]ϵ, and e6 = [Ev′(u)Eq+C(v′(u), η′e)]ϵ.

Proof that fθ(θ|Q′, T ′) > fθ(θ|Q, T ).

By definition fθ(θ|Q, T ) = limϵ→0
µ(θ+ϵ)−µ(θ)

ϵ
, and fθ(θ|Q′, T ′) = limϵ→0

µ′(θ+ϵ)−µ′(θ)
ϵ

.
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Thus, we show that fθ(θ|Q′, T ′) ≥ fθ(θ|Q, T ), adn ignore the 2nd order ϵ, ϵ′ terms.

This turn out requires

a(e6 − e2) < b(e5 − e1).

b > a since u ≤ 1. The sufficent condition for the condition becomes

e5 − e1 >e6 − e2

⇔ C(ϕ′(u)− v′(u), η′e) >C(ϕ(u)− v′(u), ηe),

⇔ C(ϕ′(u)− v′(u), η′e − ηe) >0,

⇔ C(ϕ′(u)− v′(u), q′ − q) >0,

⇔ E{(ϕ′(u)− v′(u))(q′ − q)} >(E{ϕ′(u)− v′(u)})(Eq′ − Eq),

⇔ E{(ϕ′(u)− v′(u))(q′ − q)} >0.

Recall that by (3), ϕ′(ui)−v′(ui) is increasing in ui, and (Q′, T ′) is a mean-preserving

spread of (Q, T ) for θ, thus, for u−i large q
′ − q is also large. In general, the order of

ϕ′ − v′ in line with q′ − q. This shows that C(ϕ′(u)− v′(u), q′ − q) > 0. ■

Generalized A.1.: Preference is monotonic with respect to FOSD when

(4)

Note that in previous we have ηe−i = q−i ≥ 0; if we replace it by some function that is

weakly positive, ηe−i = η−i ≥ 0. ue = u + ηϵ becomes any random utility that FOSD

u by same variation in the direction η. Pick any η that is weakly positive and let
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ηe = η. We have to proof limϵ→0
µ(θ+ϵ)−µ(θ)

ϵ
≥ 0.

µ(θ + ϵ) ≥ µ(θ),

⇔ be1 ≥ ae2.

Since b ≥ a, e1 ≥ e2 is suffice.

e1 ≥e2,

⇔ Eϕ′(u)Eη + C(ϕ′(u), η) ≥Ev′(u)Eη + C(v′(u), η),

⇔ E{(ϕ′(u)− v′(u))η} ≥0.

This is direct since ∀θ−i, η(θ−i) ≥ 0 and by (4), ∀ui : ϕ′(ui) ≥ v′(ui).

Generalized proof of A.2.: µ′(θ) ≥ µ(θ). Change of distorted utility for type θ

from replacing the mechanism (Q, T ) by a variation mechanism (Q′, T ′) that is mean-

preserving spread of (Q, T ) for θ. By definition, we are studying small variations:

lim
ϵ′→0

µ′(θ)− µ(θ)

ϵ′
≥0

⇔ be3 ≥ae4

This is ture since b ≥ a. e3 ≥ e4 is suffice. This is automatic by (4).
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A.4 Proof of Lemma 5: Given a mechanism (Q, T ) that give

V (θ), fθ(θ), the designer can reduce V (θ), fθ(θ) by reduct-

ing Q(θ, ·) or increasing T (θ, ·). Both have different re-

latve effect on V (θ) and fθ(θ).

Fix an mechanism (Q, T ) and a report θ̂ and a type θ. Let q, t be q(·) = Q(θ̂, ·),

u(·) = Q(θ̂, ·)θ − tT (θ̂, ·), v(·) = v(u(·)), and v′(·) = ∂v
∂u
(·). Instead of studying the

effect of deviation of q, t on V, fθ. We study the effect of (u, q) on V, q and use total

derivative to find the effect of (q, t) on V, fθ. Define the functional V (u) = E−i{uv}
E−i{v} and

fθ(u, q) = E−i{q(v+uv′)}E−i{v}−E−i{qv′}E−i{uv}
(E−i{v}2) ; while V̂ (q, t) = V (θq − t) and f̂θ(q, t) =

fθ(qθ − t, t).

Denote B1(u, q) = E−i{q(v + uv′)}, B2(u, q) = E−i{v}, B3(u, q) = E−i{qv′},

B4(u, q) = E−i{uv}, and define the integrand bi(α, β) byBi(u, q) =
∫
θ−i∈Θ−i

bi(u(θ−i), q(θ−i))G(dθ−i).

Also let B = B1B2 −B3B4Using the notation we have V = B4

B2
, fθ =

B
(B2)2

.

For functional F that take functions a, b as input, and deviation function η, de-

note the deviative of F with respect to a by function η as δF
δa
(a, b; η) = F η

a (a, b) =

limϵ→0
F (a+ηϵ,b)−F (a,b)

ϵ
.

By A.1., we have for all η ≥ 0, V η
u (u) > 0, and by A.3. We have for all η ≥ 0,

f η
θ,u(u, q) ≥ 0. Both are ture since if η ≥ 0, u+ η FOSD u. By chain rule we have
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V̂ η
q (q, t) =θV

η
u (u)

V̂ η
t (q, t) =− V η

u (u)

f̂ η
θ,q(q, t) =θf

η
θ,u(u, q) + f η

θ,q(u, q)

f̂ η
θ,t(q, t) =− f η

θ,u(u, q)

, where u = qθ − t.

Note that B2 and B4 are independent of q (with u fixed):

f η
θ,q =

Bη
1,qB2 −Bη

3,qB4

(B2)2
.

Recall that B2(u, q) = E−i{v} and B4 = E−i{vu}, as we have u ≤ 1, we know that

B2 ≥ B4. Also, Bη
1,q(u, q) = E−i{η(v + uv′)} and Bη

3,q(u, q) = E−i{ηv′}. For η ≥ 0,

(4) implies Bη
1,q ≥ Bη

3,q. Thus, we have

∀η ≥ 0 : f η
θ,q ≥ 0.

Summarizing we have for every ηq ≤ 0, ηt ≥ 0.

V̂ ηq

q (q, t) =θV η
u (u) ≤ 0;

V̂ ηt

t (q, t) =− V ηt

u (u) ≤ 0;

f̂ ηq

θ,q(q, t) =θf
ηq

θ,u(u, q) + f ηq

θ,q(u, q) ≤ 0;

f̂ ηt

θ,t(q, t) =− f ηt

θ,u(u, q) ≤ 0.
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Also, event it two variation have the same impact on utility, the relative effect is

different
V̂ θη
q

f̂ θη
θ,q

̸= V̂ −η
t

f̂−η
θ,t

.

B Proof: The Motivating Example

Results for auctions with SEU bidders are commonly known. For FPA, both bidders

bids according to strategy βFPA,SEU
i = 1

2
θi. For SPA, both bidders bid their own

value βSPA,SEU
i = θi. Both revenue are equivalent.

Now, consider the case of biased bidders. The correct belief on other’s type is

θj ∼ G = U [0, 1], with the density g(θj) = 1 for every θj ∈ [0, 1] := Θj. Cosider a

simple distortion that place probability δ on the best case that the other have zero

valuation. Formally, the distorted belief Gδ : Θj → [0, 1] is

Gδ(θj) = δ for θj = 0, and gδ(θj) = 1− δ for θj ∈ (0, 1],

where gδ is the denesity of the distorted belief Gδ when θi ∈ (0, 1].

Consider the symmetric Bayesian Nash equilibrium (BNE) in an FPA. To make

sure equilibrium exists, we assume that the minimum bid is b and consider the limit

case that b→ 0.
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Given θ1 and player 2’s strategy β2(θ−i) the expected utility for bidding b1 ≥ b is

u1(b1|θ1) = Gδ(β2(θ2) < b1)(θ1 − b1),

= Gδ(θ2 < β−1
2 (b1))(θ1 − b1),

= (1− δ)β−1
2 (b1)θ1 − (1− δ)β−1

2 (b1) + δ(θ1 − b1).

FOC gives

(1− δ)β′
2(β

−1
2 (b1))

−1θ1 = (1− δ)[β′
2(β

−1
2 (b1))

−1b1 + β−1
2 (b1)] + δ.

By the symmetry β1 = β2 = β, and b1 = β1(θ1) = β(θ). Thus, the FOC condition

becomes

θ − δ

1− δ
= β′(θ)θ + β(θ) =

d

dθ
β(θ)θ,

β(θ)θ =

∫ θ

0

(x− δ

1− δ
)dx,

β(θ) =
1

2
θ − δ

1− δ
.

Thus, the BNE symmetric equibrium is

βFPA,WT (θ) =



1
2
θ − δ

1−δ
if θ ≥ b and θ ≥ 2δ

1−δ
,

b if θ ≥ b and θ < 2δ
1−δ

,

0 otherwise.

It is easy to see that βFPA,WT < βFPA,SEU , and the difference vanishes as δ = 0.

Thus, the revenue of the seller reduces when the bidders are subject to WT bias.
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In SPA, the strategy β(θ) = θ is weakly dominant regardless of belief.
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