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Abstract 

Voting cycles do exist, but much less frequently in practice than are predicted. This paper develops 

an estimate of the probability of a cycle that closer to what the data reveal. In the absence of an 

abundance of actual voting data in which voters rank candidates, survey data is the best alternative. 

We use German Politbarometer data, which offers two benefits for empirical analysis of voting 

systems; the fact that participants score the candidates and the large number of observations. We 

develop hypotheses and models based on cardinality. Specifically, we consider a 'median' of 

collected evaluations as a significant factor in predicting the winner of head-to-head comparisons, 

estimating the probability of a cycle from the joint probability of two sets of three events occurring. 

The model predicts a significantly lower voting cycle frequency than models based on the IC and 

IAC assumptions. Our approach involves 1) assigning three candidates presumed positions of first, 

second and third 2) noting the gaps between pairs of candidates in apparent estimated merit, and 

then 3) computing the probability that the three pairwise comparisons will have a combination of 

outcomes that results in a cycle. 
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1. Introduction 

The decision-making process of a group is not like that of an individual. When people have 

different views and preferences, a natural and acceptable way to aggregate the opinions of the 

members of the group is voting. The most common electoral system, plurality rule, is used 

worldwide and continuously. The ease of understanding and implementing plurality are advantages, 

but it also has flaws. Thus, researchers have suggested many alternatives to better aggregate 

individuals’ preferences and reach better outcomes. Almost all of them are demonstrably better 

than the plurality rule in many respects. 

Nevertheless, no voting rule is “ideal.” In particular, no ranking-based voting rule for three 

or more options is free from the Condorcet paradox, the possibility that aggregated majority 

preferences are cyclic or, in other words, transitivity does not hold: Suppose there are three 

available options for a group, A, B, and C. Different majorities of the group prefers A to B, B to C, 

and C to A. If the group decides to use pairwise comparisons sequentially to find the best option 

for the group, the winner depends on the order of the comparisons, and the agenda setter can 

manipulate the result. The more severe problem is that if a voting cycle exists, for any option that 

wins under ANY voting rule, there will always be another option with a majority over the chosen 

one. Thus, voting provides necessarily imperfect estimates of the socially best option, and the 

impact of the Condorcet paradox has been regarded as a serious potential peril to the coherence of 

democratic decision-making. More worrisome is the fact that some theories and probabilistic 

models predict the frequent occurrence of the Condorcet paradox. 

Researchers have also tried to find empirical evidence. However, the Condorcet paradox 

has not been detected in practice as often as previous studies. Rather, voting cycles have very rarely 
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been observed. Nevertheless, one supposes that the gap between the theories and the real world 

arises only because the number of empirical studies is limited. According to Van Deemen (2014) 

[16], there have been only 47 empirical studies related to the Condorcet paradox, involving 265 

elections in total, from 1955 to 2010. Moreover, almost all of these studies dealt with a few 

elections.  

The main reason for a limited number of studied elections is that available data are scarce. 

There have been countless elections in human history, and, for many of them, the data exist. 

However, most elections are held under the plurality rule, which can only reveal how many first-

choice votes each candidate had. This information is insufficient for constructing each voter’s 

ranking of the candidates and so the aggregated ranking. Thus, there is no way of determining the 

existence of Condorcet paradoxes or of opportunities for strategic voting.  

In the present paper, we use a part of German Politbarometer survey data. The data include 

respondents’ scoring data of politicians. Using the data, we construct individuals’ reported 

preference orderings and check the frequency of voting cycles in synthetic elections. One might 

be concerned that people who participate in a poll or survey may have significantly different 

preferences than people who do not, so that an analysis based on the survey data will not be a good 

way to approximate the preference orderings of voters. However, it is impossible to know voters’ 

rankings unless voters report their rankings of candidates in elections, so survey data is generally 

the best available actual data except for actual election data.  

Additionally, the lack of data from actual elections makes it more interesting to use survey 

data. A huge benefit of using Politbarometer data is its vast number of observations: We analyze 

1,022 synthetic elections. Another advantage of using poll or survey data is that respondents have 
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no incentive to report false preferences intentionally, and so there is reason to expect less distortion 

in aggregated preferences. Since participants are merely answering a survey, nothing changes with 

regards to one’s welfare. However, that also causes some meaningless or careless responses, and 

we screen out the obviously meaningless ones. 

Our goal is to report the empirical result and then suggest a way to explain the observed 

frequency of the Condorcet paradox and the reason for the departure of the result from the 

predictions of previous models. The modeling process is based on actual data, unlike previous 

probabilistic models. What makes our work different from the others more than anything else is 

that we directly connect the cardinal information to the probability of winning in the pairwise 

election and establish a model based on that to estimate the frequency of voting cycles. Specifically, 

we introduce the concept of a fraction-valued median, which is based on a combination of the 

standard median and the distributions of evaluations below and above the median. Then, we check 

the usefulness of the gap in the fraction-valued medians of scores of two candidates for predicting 

which candidate wins in pairwise comparisons. Finally, we consider a cycle as a result of three 

consecutive head-to-head election and calculate the probability by multiplications of three 

estimated probabilities. 

Contents 

The remaining parts of this paper are as follows: In section 2, a literature review, we discuss some 

well-known probabilistic models and describe the departures of the predictions of these models 

from the occurrence of the Condorcet paradox in empirical work. Section 3 describes the data that 

are used, the methods of analysis, and the results. Finally, section 4 summarizes and proposes 

future research. 
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2. Literature Review 

The Condorcet paradox was initially discussed in the late 18th century by Condorcet. Since then, 

there have been fewer results from empirical work than from theoretical approaches. Researchers 

have mainly analyzed elections generated from hypothetical, probabilistic models because of the 

scarcity of large data sets of the relevant sort.  

First, we will outline widely used probabilistic models, discuss empirical work on the 

Condorcet paradox. 

Probabilistic models 

Individuals’ preference orderings determine the aggregate preference ordering through the 

application of a voting rule, and the choice of the voting rule affects who will win.  

 When we have n alternatives, we have n! possible strict orderings. Furthermore, the 

frequency distribution over the strict orderings would be expressed by a vector with n! components, 

such that the sum of components is 1.  

Impartial Culture (IC) model 

Guilbaud (1952) [8] proposed the impartial culture (IC) model, which, for every voter, assigns 

equal probability to every possible preference ordering. For example, suppose there are six (strict) 

rankings ABC, ACB, BAC, BCA, CBA, and CAB for three options A, B and C. Hence, the IC 

model assumes that every individual would have each preference ranking with 1/6 probability. 

Impartial Anonymous Culture (IAC) model 

The impartial anonymous culture (IAC) model was developed by Kuga and Nagatani (1974) [9] 
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and Gehrlein and Fishburn (1976) [3]. 

Define a preference profile as a sequence of preference orderings. For the case of two 

alternatives A and B with three voters, there are 2 possible preference orderings, AB and BA, and 

2ଷ = 8 possible preference profiles. Then, we can categorize the profiles into four “anonymous 

equivalence classes” (AECs) by their composition without considering the order of voters. 

AEC1: AB x3       - (AB, AB, AB)  

AEC2: AB x2, BA x1 – (AB, AB, BA), (AB, BA, AB), (BA, AB, AB) 

AEC3: AB x1, BA x2 – (AB, BA, BA), (BA, AB, BA), (BA, BA, AB) 

AEC4: BA x3       - (BA, BA, BA) 

 

The IAC model assumes that each class of preference profiles has an equal probability of 

realization, 1/4 for the given example. 

Normal spatial model 

The normal spatial model was developed by Good and Tideman (1976) [7]. This model assumes 

an attribute space, and an individual’s preference ordering is determined by the distances from the 

options to his or her most desired option, with closer options ranked higher. The Normal spatial 

model assumes that the voters’ most desired options are drawn from a (multivariate) normal 

distribution. The hyperplanes that perpendicular bisect line segments connecting all pairs of 

candidates divide the space into sectors corresponding to different strict preference orderings. The 

integration of the voters’ probability density over all such sectors specifies the probabilities. For 

three candidates, one needs at least two dimensions to represent all six possible, strict rankings.  
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<figure 1, normal spatial model, 3 candidates, 2-dimensional> 

The probabilities implied by the models 

The normal spatial model implies that as the number of voters approaches infinity, the probability 

of a voting cycle approaches 0, since a candidate closer to the mode of the voters’ locations will 

always have more votes than a candidate who is farther from the mode. Gehrlein (2002, 2006) 

[4][5] provides calculations for the probabilities of the existence of the Condorcet winner under 

different assumptions on culture. In the three-candidate case, it is equivalent to the probability of 

non-existence of the Condorcet paradox. When the number of voters goes large enough, the IC 

model and the IAC model yield probabilities of Condorcet paradox decreases and converges to 

8.77% and 6.25%, respectively. On the other hand, the estimated frequency of a voting cycle under 

the normal spatial model, varies depending on the data, is much lower than those of the IC and 

IAC models, and converges to 0 as the number of voter goes infinity. 
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Empirical works 

We will briefly summarize the framework and results of empirical works that provides estimates 

of the frequency of the Condorcet paradox. We purposely omit relevant ones published before 

2010 (cf. Gehrlein and Lepelley (2011: 13) [6]and Van Deemen (2014, Sect. 5) [16]). 

Voting cycles in simulations based on real data 

Popov et al. (2014) [13] used five-candidate American Psychological Association (APA) 

presidential election data to compare and evaluate various voting systems, including the Plurality 

rule, Instant Runoff Voting, and the Borda Rule. The data include voters’ full or partial rankings of 

candidates. With 12 elections, they generated three thousand bootstrapped ballot profiles for each. 

The frequency of Condorcet paradox was infrequent, lower than 0.3% of total samples.  

Darmann el al. (2019) [1] used online survey data collected two weeks before the 2015 

parliamentary elections in the Austrian federal state of Styria. Questions asked respondents to 

assign points ranges in [-20,20]. The authors reported 13 voting cycles out of 1000 bootstrapped 

profiles but 0 voting cycles of three candidates who won the most votes under plurality rule. 

Another notable empirical study is Tideman and Plassmann (2012) [15]. They used actual 

election data from Electoral Reform Society, and survey data from the American National Election 

Studies. They showed that the spatial model fits the data better than other probabilistic models, 

including the IC and IAC models. The authors estimated the share of preference orderings by 

spatial model and simulated 1,000,000 elections for each different number of voters. For 1,000 

voters, the voting cycle existed 0.53% of simulated elections, and it converged to 0% as the number 

of voters increased. 
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Voting cycles in real data 

Mattei (2011) [11] measured the Condorcet efficiency (the probability of selecting a Condorcet 

winner) of several voting rules and calculates how often a voting paradox happens in three 

alternative and four-alternative elections that are constructed from a vast data set consisting of 

individual ratings of 17,770 movies. The ratings came from 480,189 distinct users of Netflix, who 

were asked to assign stars from 1-5 (with half stars permitted) for how well they liked the movies 

they watched12. The author made three subsets by randomly drawing 2,000 movies from the 17,770 

movies. He then generated all possible three-alternative elections and four-alternative elections in 

each subset. A derived election was included in the analysis only if it had more than 350 voters. 

The share of three-alternative elections that exhibited Condorcet paradox in the three independent 

subsets were 0.041%, 0.044%, and 0.056% in each subset. In Mattei et al. (2012) [12], the work 

was extended. The authors made ten subsets with the same data set with non-overwrapping 1,777 

movies for each and checked the voting cycle for all possible triples and quadruples in each subset. 

The frequency of the cycles in the top three candidates in four alternative elections was lower than 

0.11% of the total. 

 Kurrild-Klitgaard (2014) [10] provided possible evidence of a voting cycle in practice 

based on the result of a Monmouth University Poll in March and April 2015, which asked head-

to-head comparison of four potential candidates (Jeb Bush, Chris Christie, Ted Cruz, and Scott 

Walker) for 2016 Republican party presidential primaries. The result showed a top voting cycle of 

                                           
1 One can find detailed information at https://www.netflixprize.com/. 

2 The rating by stars has been abolished and replaced by ratings of “like” or “dislike.” 
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three candidates. Feizi et al. (2020) [2] also analyzed several polls before the actual election. The 

polls began some weeks before the 2017 Iranian presidential election. The polls included the 

pairwise comparison of candidates. The authors concluded that there was no voting cycle of three 

leading candidates in any poll. 

 

3. Analysis 

Description of the data 

We use German Politbarometer data, which are freely available to the public at the Politbarometer 

website. These data come from surveys of German voters, conducted approximately monthly, 

beginning in 1977 and ending in December 2019. The surveys contain many questions about 

demographic characteristics, region of residence, and weekly working hours.  

We focused on questions related to a skalometer (in English, consists of “scale” and 

“meter”) of politicians. Each participant is asked to assign to each politician one of the 11 integers 

from -5 to 5; higher integers meaning the participant thinks higher of the politician. Thus, we have 

cardinality as well as rankings, which is uncommon. 

After East Germany and West Germany united, we treat the data as separate surveys for 

East and West Germany. We also divide the data when the set of politicians for the questions varies, 

even in the same region and the same month. After cleaning the data, we have 1,022 usable surveys. 

In each survey, at least four and at most 21 politicians are evaluated (10.62 on average), 

and the number of participants in a survey ranges from 179 to 3,345 (930.05 on average). The 

politicians in the questionnaire consist of influential politicians at the time of the survey. There is 
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no regular rule for forming the pool; some politicians continue to the following survey, and others 

do not. Some excluded politicians are re-included in later surveys’ pools. In some surveys, former 

politicians or famous politicians from countries other than Germany are also on the list3. 

 For convenience, we confine our analysis to triples of candidates, the minimum number 

of alternatives needed for a Condorcet paradox. We construct triples from each survey, for all 

possible combinations of three politicians in the survey. To be specific, we can make four triples 

from four politicians, ten triples from five politicians, and 𝑛(𝑛 − 1)(𝑛 − 2)/6  triples from 𝑛 

politicians.  

 For every triple, we checked for the existence of a cycle by paired comparisons. We 

exclude participants who did not provide a score for both politicians. As a result, there are 206 

majority cycles (including semi-cycle), out of 181,579 triples, a rate of 0.113%, or about 1 out of 

881, showing a significant departure from the predictions of the IC and IAC models. 

Framework for analysis 

1. Decompose a voting cycle into three probabilistic events 

To check whether there is a voting cycle, we need to know the majorities in three paired 

comparisons. Define ApB as the voter strictly prefers A to B, n[ApB] as the number of voters who 

prefer A to B, and d୅୆ as the difference between n[ApB] and n[BpA]. 

 For arbitrarily labeled alternatives A, B, and C, as table 1 shows, there are eight possible 

                                           
3 Ronald Reagan, Margaret Thatcher, George W. Bush, Michail Gorbachev, Tony Blair Jacques Chirac, 

and Vladimir Putin are on the list on some surveys. 
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combinations of the sign of d୧୨ for i ≠ j ∈ {A, B, C}, and they correspond to the six possible 

strict preference orderings and two cyclical orderings of the three options. 

  
d஺஻ d஻஼ d஺஼ 

preference 

ordering 

sign of 

difference in 

majority 

+ + + ABC 

+ + - 
ABCA 

(cycle) 

+ - + ACB 

+ - - CAB 

- + + BAC 

- + - BCA 

- - + 
CBAC 

(cycle) 

- - - CBA 
<table 1, eight possible profiles of signs of 𝐝𝐢𝐣 and implied preference orderings> 

If we can accurately predict the sign of d୅୆, d୆େ, and d୅େ, then we can also predict 

whether there exists the voting cycle or not. Furthermore, properties of the distributions of 

skalometer scores are likely to be good predictors of the signs of majorities and therefore of the 

existence of voting cycles. Thus, we record the median evaluation of each alternative. 

Why does the median matters? 

Let the voters’ cardinal evaluation of two candidates be distributed on a two-dimensional 

space as in <figure 2>. A voter’s evaluation of A is on the x-axis and that of B is on the y-axis. 

Med୅ and Med୆ are the median evaluation of candidates A and B, respectively. If voters cast 

ballots based on their evaluation, B will be selected by the majority rule if and only if more than a 

half of voters are located above line D, which is a 45-degree line. However, due to the half of 
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voters being on the right of Med୅, and half voters being below Med୆, candidate B is less likely 

to have a majority of the votes. 

 

<figure 2, Median and Majority> 

Another way to think about the possibilities is to rotate the horizontal line Med୆ about a 

point p, 45 degrees, counterclockwise. The line will coincide with the dashed line D. The voters 

who rank A ahead of B are the ones on the lower right side of the dashed line D. Line Med୆ 

represents an even split of the voters. Therefore, for there to be a majority in favor of candidate B, 

ruling out voters in area X from above the line Med୆, and adding voters in area Y from below the 

line, add less voters than it subtracts. This seems more and more likely as the intersection of Med୅ 

and Med୆ moves farther below line D. 

To measure the impact of relative median evaluations on the probability of winning, we 

check each candidate’s median evaluation and which one would win more votes in all 55,321 pairs 

of candidates from 1,022 surveys. Among 41,512 pairs with a gap between two candidates’ median 

evaluations, the candidate with the lower median beats the other in 213 cases. It happens only 

when the gap is 0.5 and 1, and the proportion is smaller when the gap is 1 then when it is 0.5.  
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median 

gap 
pairs 

beat by 

lower 

candidate 

 median 

gap 
pairs 

beat by 

lower 

candidate 

0 13809 0  5.5 1 0 

0.5 297 22  6 93 0 

1 22195 191  6.5 2 0 

1.5 203 0  7 31 0 

2 11864 0  7.5 0 0 

2.5 71 0  8 7 0 

3 4639 0  8.5 0 0 

3.5 28 0  9 4 0 

4 1576 0  9.5 0 0 

4.5 8 0  10 0 0 

5 493 0     

    total 55321 213 
<table2, the number of pairs and beat by lower with respect to median gap> 

Comparing the median evaluations seems to be a reasonable way to predict which 

candidate will win in paired comparison. A substantial problem with using the median gap in our 

analysis is that the survey allows only 11 integers for scoring, so there are many ties in pairwise 

comparisons of medians. Indeed, we have pairs that have the same median evaluation between two 

candidates in about 1/4 of the total cases. We need to identify a better measure of candidate quality, 

one that will be a better explanatory factor for the difference between votes that two candidates 

receive and will be easy to observe and calculate. 

The Fraction-Valued Median (FVM) 

We construct a measure that has the character of a median but generally does not result in ties, 

despite only a few discrete values that the underlying variable can take. The “fraction-valued 
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median (FVM)” takes non-integer value based on the median and the placement of the median in 

the set of median-valued observations.  

It is derived in the following way. 

-Sort the numbers in ascending order 

-Let 𝑴 be the integer median of the numbers in the set, 

-Let 𝑵 be the number of observations that take the standard median value, 

-Let 𝑲 be the number of observations to the left of “the median” that take the standard median 

value. 

 Then FVM of the set is M –  1/2 +  K/N. Consider a ruler only has major grids. The best 

way to guess something’s length which is not exactly fit to the major grid is that measure how it is 

far from the closest number. M-1/2 apply to the closest previous number, and K/N is a normalized 

distance from it. If the median occurs precisely in the middle of the observations that have the 

median value, then the FVM is M. By its definition, FVM can only have the value from M − 1/2 

to M + 1/2, and even two sets have the same standard median, it will generally be true that one 

will have a higher FVM than the other. Note that if the standard median is not an integer, then 

define FVM as the median. 

As an example of a calculation of an FVM, the set {2,2,3,3,4,5,7}  has an FVM of 

3 –  0.5 +  0.75 =  3.25 (figure 3a). The value indicates that the standard median is 3 and, being 

greater than the standard median indicates that the number of observations in the given set that 

take a value 3 is located more to the left. In other words, the share of scores above the median is 

larger than that of below the standard median. That is how the usual majority (Fabre, 2021 [2]) 
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deals with tie-breaking under the highest median rule, checking normalized differences between 

scores above and below the standard median. FVM and the usual majority are two sides of a coin: 

started from different ideas but have the same essence, and are mathematically identical4  

Graphically, FVM is described as follows. 

 

<figure 3a, Idea of Fraction-Valued Median> 

                                           
4 For a tie-breaking, the usual majority (Adrien 2021) suggest to compare ଵ

ଶ

௣ି௤

ଵି௣ି௤
 where 𝑝 and 𝑞 

are share of scores above and below the standard median. Replace K = 0.5 − q and N = 1 − p − q to 

−1/2 + K/N ends up with the same form. 
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<figure 3b, Median and Fraction-Valued Median by CDF> 

 The cumulative density function (CDF) of a set of discrete random variables is a step 

function. The standard median is the score where the CDF intersects a horizontal line at the height 

0.5. Suppose a series of line segments, passing through the midpoints of all of the horizontal 

segments of the CDF (the second graph on figure 3b). The FVM will be at the fractional score 

where that series of line segments intersects the horizontal line at the height of 0.5. 

Upset rate 

Now we restrict our interest to the top triple of each survey, the three politicians with the highest 

FVMs. The main reason for this restriction is that the frequency of voting cycles being created by 

a fourth or other politician and resulting in no Condorcet winner can be expected to be much lower 

than the frequency for cycles among the top three. 

 We assign labels 1, 2, and 3 according to FVMs. That is, 1 is the politician who has the 
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highest FVM among all candidates in a survey, 2 is the second highest and 3 is the third highest. 

 If scores assigned by participants are not correlated, then in any paired comparison, the 

candidate with the higher FVM score is more likely to win the paired comparison. While the 

candidate with the lower FVM might beat the candidate with the higher FVM, we will call such 

an event an “upset” and the usual result a “straight.” We checked how often upsets happen in all 

possible pairwise comparisons to the difference in fraction-valued medians. We have 3,066 pairs 

from the top three candidates of 1,022 surveys. We fit the data for the upset rate, U, by the arc of 

an ellipse. The data shows a clear downward trend for the frequency of upsets as a function of the 

FVM difference between two candidates, as shown in the <figure 4>. 5 

  

                                           
5 We attach graphs and notes about estimation the upset rates by mean score in Appendix. 
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<figure 4, upset rate> 

U(D) =
ଵ

ଶ
ቈ1 − ට1 − ቀ

஽ିସ଴଼

଴.ସ଴଼ଵ
ቁ

ଶ

቉  <equation 1> 

Where D is the difference in FVMs, and the number 0.4081 matches the integral under the ellipse 

to the integral of the line segments from the data. 

For a given FVM difference, D, U( . ) generates the probability estimation of an upset, and 

1-U(.) estimates the probability of a straight. A voting cycle requires either (straight, straight, upset) 

or (upset, upset, straight) in pairwise comparisons, and the probability of a voting cycle can be 

calculated as follows 

p(𝑑ଵଶ, 𝑑ଶଷ, 𝑑ଵଷ) = [1 − 𝑈(𝑑ଵଶ)][1 − 𝑈(𝑑ଶଷ)]𝑈(𝑑ଵଷ) + 𝑈(𝑑ଵଶ)𝑈(𝑑ଶଷ)[1 − 𝑈(𝑑ଵଷ)] 

<equation 2> 

where 𝑑௜௝ is FVM difference between ith and jth candidates.  

We extract 𝑑௜௝
௡ s (FVM differences in 𝑛 th survey) from 1,022 surveys, and calculate 

∑ 𝑝௡ଵ଴ଶଶ
௡ୀଵ (𝑑ଵଶ

௡, 𝑑ଶଷ
௡, 𝑑ଵଷ

௡) as a simple estimation of voting cycles, and we have 9.1837. 

Frequency of 𝒅𝟏𝟐, 𝒅𝟐𝟑, 𝒅𝟏𝟑 

Besides the function for estimating upset rate by given D, question of interest is the 

distribution of D. The empirical frequency distribution of FVM differences between candidates 1 

and 3 is shown in <figure 5>. By its shape, we fit a generalized gamma distribution (three-

parameter gamma distribution) in the data. Specifically, for the distribution function to emerge 

from the origin with a finite, positive slope and no curvature, as seems to be true of the data, the 
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second parameter of the generalized gamma distribution, d, must be 2.  

The probability density function of generalized gamma distribution is as follows. 

f(x: a, d, p)  =  
𝑝/𝑎ௗ

Γ(d/p)
𝑥ௗିଵ𝑒ି(௫/௔)೛

 

The likelihood maximized when (a,d,p) = (1.1531,  1.7766,  2.0646), <figure 5> shows 

that the estimated with the real frequency of the data. 

  

 

<figure 5. Empirical distribution of D and estimation with three-parameter gamma 

distribution when (a,d,p) = (1.1531, 1.7766, 2.0646), > 
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we do not assume each FVM difference is drawn independently; we assume a FVM difference 

between candidates 1 and 3 is drawn and examine the proportions in which this difference is 

divided between a 1-2 difference and a 2-3 difference. Thus, if we define the share of FVM 

difference between 1 and 2 in the FVM difference between 1 and 3 as z =
ி஻ெభିி஻ெమ

ி஻ெభିி஻ெయ
, we can 

examine the empirical distribution of this share. <figure 6> shows that it seems to have a relatively 

steep upward trend until a certain point, and then the degree gets mild. For simplicity, we fit two 

line segments. The empirical distribution shows that the FVM difference between 1 and 2 is likely 

to be greater than that of 2 and 3.  

 

<figure 6, Empirical distribution of the ratio z and estimation with two line 

segments> 

g(z)  =  ൜
64.206 + 67.327(𝑧 − 0.625)   𝑖𝑓 𝑧 ≤ 0.625

64.206 + 0.320(𝑧 − 0.625)     𝑖𝑓 𝑧 > 0.625
  <equation 3> 

The joint distribution of the FVM difference between 1 and 2, 2 and 3, and 1 and 3 can be 
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represented by a draw of D from a generalized gamma distribution with parameters a = 1.1531, d 

= 1.7766, p = 2.0646, followed by a draw from the normalized version of the distribution specified 

by <equation 3>, divide the difference between the FVMs of 1 and 3 into a difference between 

the FVMs of 1 and 2 and between those of 2 and 3. 

The probability estimation is an integration of the probability of two “types” of cycle given 

1-3 FVM difference and proportions of 1-2 FVM difference and 2-3 FVM difference. The 

expectation of the probability of a cycle can be calculated as 

𝑃 =  ∫ 𝑓(𝐷)
ଵ଴

଴
ቀ∫ 𝑔(𝑧)

ଵ

଴
[[1 − 𝑈(𝑧𝐷)][1 − 𝑈((1 − 𝑧)𝐷)]𝑈(𝐷) +  𝑈(𝑧𝐷)𝑈((1 −

𝑧)𝐷)[1 − 𝑈(𝐷)]]dzቁ dD     <equation 4> 

The estimation is 0.0088 (0.88%) or one cycle every 113.6 elections. The estimation is a 

bit off from what data shows; in 1,022 triples of top candidates from all surveys, there are 0 cycles. 

 

An extended model 

For our research, we choose only the top three candidates among the candidate pool in each survey, 

and the number of politicians in the pool varies in each survey from 4 to 21. It is reasonable to 

expect that the average values of differences in FVMs within the top triple will shrink when the 

top triple is chosen from a survey that has more politicians. Intuitively, when all politicians have 

FVMs in the fixed interval [-5,5], more politicians can be expected, on average, to lead to a 

reduction in every gap between a candidate to a candidate, and the gap will be 0 in the limit as the 
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number of candidates increases.6 

The data display a weak negative correlation between the number of candidates in a survey 

and the FVM difference between candidates 1 and 3, or D. The standard deviation somewhat gets 

smaller (<table 3>, <figure 7>, and <figure 8>).  

Number of 
candidates 

Number of 
instances 

Mean 
difference  

in 1-3 FVM 

Standard 
deviation 

Coefficient  
of variation 

Standard 
error of 
estimate 

4           18 1.7825  0.7558  0.4240  0.1781  
5           22 1.5989  0.4449  0.2782  0.0949  
6           23 1.5207  0.5936  0.3904  0.1238  
7           15 1.2041  0.6812  0.5658  0.1759  
8           19 1.2831  0.6405  0.4992  0.1469  
9           11 0.9426  0.5228  0.5546  0.1576  

10           483 0.7876  0.4345  0.5516  0.0198  
11           250 0.9515  0.4705  0.4944  0.0298  
12           48 0.8593  0.4704  0.5474  0.0679  
13           44 0.7759  0.4139  0.5335  0.0624  
14           16 0.9608  0.4127  0.4296  0.1032  
15           26 1.1314  0.4957  0.4382  0.0972  
16           11 1.2559  0.4868  0.3876  0.1468  
17           5 1.0412  0.3490  0.3352  0.1561  
18           20 1.2805  0.4340  0.3389  0.0970  
19           4 1.5021  0.5549  0.3694  0.2774  
20           4 1.1556  0.2175  0.1882  0.1088  
21           3 1.1758  0.1008  0.0857  0.0582  

 

<table 3, relative statistics of the data> 

                                           
6 We attach the table of 95% confidence interval of the gap between the first and the third order 

statistics, 𝑋(ଵ) − 𝑋(ଷ), in Appendix. 
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<figure 7, 1-3 FVM difference and the number of candidates> 

 

<figure 8, 1-3 standard deviation and the number of candidates > 
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<figure 9, The coefficient of variation 
ఙ

ఓ
, data and estimated> 

 

For convenience, we keep our assumption that the data follow a generalized gamma distribution 

with d = 1.7766 that we have found earlier. Only the other two parameters, a and p, for the 

distribution differ by the number of the candidates. We use the method of moments.  

To specify two parameters, mean and standard deviation are required, we use an 

exponential function capture the trend, and least square method for the parameters (<figure 7> 

and <figure 8>).  

μ(C) = 1.42487exp(−0.04064 × C) 

σ(C) = 0.79343exp(−0.04367 × C) 

 where μ and σ are the mean and the standard deviation of FVM difference between 1 

and 3. C is the number of candidates in the survey. 
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The coefficient of variation, the ratio of the standard deviation to the mean, of the 

generalized gamma distribution is 

ఙ

ఓ
 =  

ඨቀ
౳((ౚశమ)/౦)

౳(೏/೛)
ቁିቀ

౳((ౚశభ)/౦)

౳(೏/೛)
ቁ

మ

౳((ౚశభ)/౦)

౳(೏/೛)

 <equation 5> 

 The mean of the distribution can be found by 

μ = a 
୻((ୢାଵ)/୮)

୻(ௗ/௣)
  <equation 6> 

 We have with μ(C), σ(C), and d, and solving <equation 5 and 6> to p and C, one could 

get p and then a that corresponds to each C.  

Let f஼(𝑥) is a generalized gamma distribution with a(C), d = 1.7766, p(C). The shape is 

of the same general form as in <figure 9>, but with a squeezing of the distribution toward the 

vertical axis as the number of candidates increases. This is applying our assumption that 

differences in FVMs within the top triple tend to shrink when a survey has many candidates. 
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<figure 9, estimated distribution of 1-3 FVM differences for the number of 

candidates> 

 

Maintaining all other assumptions, the probability of a cycle can be calculated as 

P(C)  =  ∫ 𝑓஼(𝐷)
ଵ଴

଴
ቀ∫ 𝑔(𝑧)

ଵ

଴
[[1 − 𝑈(𝑧𝐷)][1 − 𝑈((1 − 𝑧)𝐷)]𝑈(𝐷)  +  𝑈(𝑧𝐷)𝑈((1 −

𝑧)𝐷)[1 − 𝑈(𝐷)]]dzቁ dD   <equation 7> 

The only difference of the new equation from the <equation 4> is that the number of the candidates 

varies the distribution of D. The probability calculation results for each number of candidates are 

shown in <table 4> and <figure 10>. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

4 cands 8 cands 12 cands 16 cands 21 cands



28 

 

Number 

of 

candidates 

Estimated 

probability of 

a voting cycle 

 Number 

of 

candidates 

Estimated 

probability of 

a voting cycle 

4 0.005581  13 0.010064 
5 0.005959  14 0.010744 
6 0.006363  15 0.011469 
7 0.006794  16 0.012243 
8 0.007254  17 0.013068 
9 0.007745  18 0.013947 
10 0.008269  19 0.014884 
11 0.008829  20 0.015883 
12 0.009426  21 0.016947 

<table 4, estimated probability of cycle> 

 

<figure 10, estimated probability of cycle > 

As the number of the candidates increases, FVM difference between the first and the third 

candidates decreases, and a voting cycle is more likely to exist. 
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4. Discussion and future work 

Theories and models have warned of the risk of the Condorcet paradox and have sought to estimate 

the frequency of cycles in actual elections. However, voting cycles rarely happen in real surveys 

and elections, and finding a better method for bridging the gap between theoretical models and 

reality is our primary objective. 

We propose an approach based on the distribution of cardinal evaluation data. Using basic 

techniques and a unique data-set with cardinality in preferences distinguishes our model from 

others. This, however, is a two-edged sword, because it is difficult to find additional data with 

voters’ scoring information. 

The data shows 0 cycles in 1,022 top triples, and 206 cycles in all 181,579 possible triples. 

On the other hand, in the base model, the estimated probability of a voting cycle among the top 

three candidates in a survey is 0.0088, or 0.88%. In the modified model with the additional 

assumption of variation dependent on the number of candidates, the estimation ranges from 0.0056 

to 0.0169 as the number of candidates increases. For a binomial distribution with p = 0.0088 with 

1,022 trials. The expected value of the number of successes is 8.9836, and the standard deviation 

is 2.653. 

Our approach is at least one step closer to an accurate model since our results suggest a 

much lower probability of a Condorcet paradox than the 8.77% and 6.25% that the IC and IAC 

models offer. Moreover, there are several aspects of the modeling process that we have ignored, 

which can be examined in future work. 

First, we ignored some statistics. We did not count the number of voters for each survey 
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and the representativeness of each observation, the weighting factor. Regarding the weighting 

factor, since we split the observations by region and by the questionnaire, it is tricky to adjust the 

factor correctly. 

Second, for all separated surveys, we assumed that they were independent of each other. 

Sometimes the candidate pool changes insignificantly from a month to the following month, and 

aggregated evaluation of a candidate is correlated from one month to the next, reducing the 

effective number of independent trials and increasing the standard error of the number of cycles. 

In some surveys, participants need to assess and judge many candidates. For instance, 

when the participant had 20 or 21 candidates to evaluate, he could feel fatigued and move over 

some “unpopular” candidates without serious consideration and evaluation. If this is the case, it 

will provide better results when we set aside or independently analyze surveys with more than a 

reasonable number of candidates. 

Fourth, we did not handle blanks. In pairwise comparison, we only counted the 

participants who evaluated both candidates and got rid of those who did not. This might be 

problematic. However, we do not expect the distortion from this process to be severe since this 

research focused on “strong” candidates, those who are highly evaluated by most of the 

participants. One possibility is to consider a blank as a choice under uncertainty or ambiguity. It 

would not be tough to make an estimated preference order. Still, it is challenging to fill the blanks 

with numbers that will produce convincing result. 
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Appendix. A 

A. Upset rate and mean difference / FVM difference in 55,321 pairwise comparisons (all possible pairs). 

 

B.Upset rate and mean difference / FVM difference in 3,066 pairwise comparisons (top 3 candidates). 
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Why do we NOT use the mean of the evaluations to predict upset? 

One of the essentials in our modeling is estimating the probability of the upset, and we construct 

a statistics, FVM, for prediction. We suggest a reason that we stick to the median in section 2. It 

is, by definition, the median is directly linked to the distribution of the majority. In addition, it is 

well-known that the mean is vulnerable to extreme values. We attach what our data tell for another 

reason.  

There is no difference in “all pairs.” However, when it comes to pairs generated from the 

1,022 top triples, with the same numeric difference between two candidates in different statistics, 

upset is less likely to happen in FVM, which indicates that FVM works better than the mean to 

predict the upset in pairwise comparisons. 

 

Appendix. B 

 To support our intuition, “the average values of differences in FVMs within the top triple 

will shrink when the top triple is chosen from a survey that has more politicians,” we do simulation 

with different distribution setting. 

 Suppose that a candidate’s evaluation follows 1) standard normal distribution, 2) uniform 

distribution[0,1]. Then for various number of samples from 3, we calculate the 95% confidence 

interval of mean of 𝑋(ଵ) − 𝑋(ଷ), where 𝑋(௜) is i’th biggest number among the samples. For each 

number of samples, we simulated 10,000 times. The result shows the gap between two order 

statistics tend to decrease as the number of samples increases, and this result would be qualitatively 

same with different support setup, [-5,5]. 
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Number 

of 

candidates 

confidence interval 

(uniform)  

confidence interval 

(normal) 
95% 

confidence 
lower 

bound 

upper 

bound  

lower 

bound 

upper 

bound 

3 0.49986 0.50183  1.67772 1.70851 

4 0.39874 0.40032  1.32073 1.34153 

5 0.33192 0.33316  1.15662 1.17343 

6 0.28447 0.28546  1.05651 1.07190 

7 0.24832 0.24913  0.98725 1.0002 

8 0.22197 0.22265  0.95017 0.96291 

9 0.19901 0.19958  0.91365 0.92590 

10 0.18115 0.18164  0.88363 0.89491 

20 0.09497 0.09512  0.73558 0.74427 

50 0.03956 0.03959  0.62221 0.62857 

100 0.01997 0.01997  0.55911 0.56455 

1000 0.00202 0.00202  0.44226 0.44597 
 


