
Qualifying Exam Questions based on ECON5125

Question 1 (25/100 points)

(A) [8 points]. Consider the simple Normal model:

 v NIID( 2) =1 2   

where 2 is known; ‘NIID’ stands for ‘Normal, Independent and Identically Distrib-

uted’.

(i) Explain why the following sampling distribution for the standardized=
1


P

=1:

√
(−)


v N(0 1) (1)

can be derived by employing two different forms of reasoning, factual (what if =∗)
and hypothetical (what if =0), explaining the difference. Note that 

∗ denotes the
‘true’ value of 

(ii) Using your answer in (i) explain how (1) provides the basis for testing the

hypotheses:
0:  ≤ 0 vs. 1:   0 (2)

to give rise to an optimal Neyman-Pearson (N-P) test based on the test statistic

(X)=
√
(−0)


 and a rejection region 1(). Define what ‘optimal’ means in this

case.

(B) [7 points] (i) State the sampling distributions of (X) under both the null

and alternative hypotheses in (2).

(ii) Using your answer in (b(i), employ probabilistic notation (P()) to define:
[i] the type I error probability, [ii] the power of the test, [iii] the p-value, and

[iv] compare and contrast [i] and [iii].

(C) [5 points] Using your answer in (A) to explain how (1), evaluated under

factual reasoning, can be used to construct a (1−) Confidence interval for ∗ the
‘true’ value of .

(D) [5 points] State the fallacies of acceptance and rejection, explaining why the

accept and reject rules and the p-value are vulnerable to these fallacies when ‘accept

0’ is interpreted as ‘evidence for 0’, and ‘reject 0’ is interpreted as ‘evidence for

1’.
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Question 2 (25/100 points)

The traditional Linear Regression (LR) model is specified in terms of probabilistic

assumptions assign to the error process {(|=) ∈N:=(1 2   )}:
=0 + 1 +  (|=) v NIID(0 2) ∈N (6)

where ‘NIID’ stands for ‘Normal, Independent and Identically Distributed’.

Table 1 shows the statistical model, implicit in (6), specified in terms of proba-

bilistic assumptions assigned to the observable process {Z:=() ∈N}.
Table 1: Statistical Normal, Linear Regression Model

Statistical GM:  = 0 + 1 +  ∈N:=(1 2   )
[1] Normality: (|=)vN( )
[2] Linearity:  (|=)=0 + 1

[3] Homoskedasticity:   (|=)=
2

[4] Independence: {(|=)  ∈N} independent process,
[5] t-invariance: θ:= (0 1 

2) are constant over 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∈N.

0= [()−1()]∈R 1=()

 ()
∈R 2=(  ()− [()]2

 ()
)∈R+

(A) [10 points]

(i) Explain how the Normal/Linear Regression model in Table 2 can be derived

from the observable vector process {Z:=() ∈N}, when one imposes the Nor-
mal, Independent and Identically Distributed assumptions, with the bivariate Normal:µ




¶
v N

µ∙
1
2

¸


∙
11 12
12 22

¸¶
 (7)

(|=) v N (0+1 2)  ∈R  v N (2 22)  (8)

Show how the NIID assumptions reduce the joint distribution of {Z:=() ∈N}
(ii) Compare and contrast the two specifications in terms of their probabilis-

tic assumptions, explaining why [1]-[5] in Table 1 are the only ones that matter for

modeling and inference purposes.

(B) [7 points] The traditional aPP Autoregressive of order one model [AR(1)] is speci-

fied in terms of probabilistic assumptions assign to the error term process {(|=) ∈N}:
=0 + 1−1 +  (|(−1))vNIID(0 2) ∈N:=(1 2   ) (9)

Explain why assuming that the stochastic process { ∈N} is Normal, Markov (M)
and Stationary (S) gives rise to the statistical Normal AR(1) model implicit in () by

specifying it using the specification in Table 1 as a template.

(C) [8 points] Using your answers in (A) and (B), compare the statistical LR (Table

1) and the statistical AR(1) models in terms of their (i) model assumptions, (ii)

statistical parameterizations as well as (iii) explain whether weak exogeneity holds

for their respective parametrizations, relating to:

LR: ( ;θ)=(|;φ1) · (;φ2) for all ( )∈R×R (10)

AR(1): ( −1;θ)=(|−1;φ1) · (−1;φ2) for all ( −1)∈R×R (11)
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Question 3: (est. time = 20 minutes)

Consider the TRUE linear regression model, expressed for the full sample as:

y∗ = Xβ + ϵ (1)

where ϵ has the usual CLRM properties, i.e follows a normal density with mean 0 and variance
matrix σ2

ϵ I.

Assume, however, that the dependent variable is measured with error, with the relationship between
the observed y and the true y∗ given as:

y = y∗ + µ,

µ ∼ n
(
0, σ2

µI
) (2)

where you can assume that µ is uncorrelated with ϵ.

Part (a), 6 points

1. Express the model in (1) in terms of y and X, and show the form of the resulting error term.
Derive the error term’s expectation and variance matrix.

2. Show that the OLS estimator of β (call it b) remains unbiased in this case.
3. Overall, what is therefore the main (and only) undesirable effect introduced by the measurement

error?

Part (b), 10 points
Now assume instead the measurement error on the dependent variable takes the following form:

y = αy∗, α ̸= 0 (3)

1. Express the model in (3) in terms of y and X, and show the form of the resulting error term.
Derive the error term’s expectation and variance matrix.
(To be specific, your equation should start with y = Xβ + ...)

2. Show that the OLS estimator of β (call it b) becomes biased in this case.
3. Does this bias make intuitive sense? Explain.
4. Show the (true) expectation of y∗|X. Then show that this model also produces (not surprisingly)

biased predictions ŷ.
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Question 4: (est. time = 20 minutes)

The VT student recreation office sampled at random graduating senior students who held at least
one campus club membership (e.g. sports, dancing, arts & crafts, debate, etc.) during their time
at Tech. Let yi be the observed number of club memberships for sampled student i.

For the sample described, note that
∑n

i=1 yi = 240,
∑n

i=1 ln (yi) = 214.4542, and n = 200.

You first assume that the distribution of yi can be characterized by the (continuous) Pareto distri-
bution, given as:

f (yi) = θy−θ−1
i

F (yi) = 1− y−θ
i with yi ≥ 1; θ > 0

(1)

where f (.) and F (.) denote, respectively the pdf and cdf for this distribution.

Part (a), 10 points

1. Write the log-likelihood for the ith observation and the full sample.
2. Derive the gradient for the sample and solve (analytically and numerically) for the MLE esti-

mator of θ (call it θ̂). Report the numerical result to a precision of four decimals.
3. Does the second order condition confirm that your estimator of θ does indeed maximize the

likelihood? Explain.
4. Given your results, what is the estimated probability that a student in this population partici-

pates held more than two club memberships, i.e. that yi > 2? (Hint: Recall that the cdf for the
Pareto density is given above). Report this numerical result to a precision of four decimals.

Part (b), 10 points
Now consider the truncated-at-one Poisson as an alternative sample distribution for yi. Recall that
the un-truncated Poisson density is given as:

f (yi) =
exp (−λ)λyi

yi!
, yi = 0, 1, 2 . . . ; λ > 0 (2)

The truncated-at-one Poisson must satisfy yi = 1, 2, 3 . . ., so it excludes the value of 0. Note that,
given that the Poisson is a discrete density, the truncated Poisson can be generically expressed as:

f (yi|yi > 0) =
f (yi)

Pr (yi > 0)
=

f (yi)

1− f (0)
(3)

1. Derive the explicit form of the density for the truncated-at-one Poisson. Simplify as much as
possible, such that only λyi remains in the numerator of the resulting fraction.

2. Write the log-likelihood for the ith observation and the full sample.
3. Suppose that the maximum likelihood estimator of λ for this sample is 2.56. What is the

estimated probability that a student in this population participated in more than two club
organizations?

4. In words, how would you decide on which model (Pareto or truncated Poisson) better fits the data
in a classical estimation framework, using predictive measures of fit (list at least 3 examples)?
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