
Qualifying Exam: Econometrics, June 2024

Answer all four questions

Question 1-(25 points)

(a)-(5 points) Explain how the Normal/Linear Regression model in table 1 can be

viewed as a parameterization of the vector process {Z:=() ∈N:=(1 2   )},
assumed to be Normal (N), Independent (I) and Identically Distributed (ID), Z v
NIID(μΣ) ∈N stemming from the distribution of the sample (z1 z2  z;φ)

where the relevant bivariate Normal distribution takes the form:µ
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(|=) v N (0+1 2)  ∈R  v N (2 22)  (2)

(b)-(10 points) Show how the parametrizations of (0 1 
2) in Table 1 are deter-

mined by (1).

Define and explain the concept of weak exogeneity in the context of the reduction:

( ;θ) = (|;φ1) · (;φ2) for all ( )∈R × R  (3)

and apply it to the case of the Normal/Linear Regression specified in (a)-(b).

(c)-(5 points) Explain why assuming that the stochastic process { ∈N} is Normal
(N), Markov (M) and Stationary (S) simplifies the joint distribution of the sample

Y:=(1 2  ) and gives rise the Normal AR(1) model; Explain each step.

(d)-(5 points) Using your answer in (c), specify the Normal AR(1) model using the

specification in table 1 as a template, and compare the two models in terms of their (i)

model assumptions, (ii) statistical parameterizations as well as (iii) how they relate

to weak exogeneity.

Table 1: Normal, Linear Regression Model

Statistical GM:  = 0 + 1 +  ∈N
[1] Normality: (|=)vN( )
[2] Linearity:  (|=))=0 + 1

[3] Homoskedasticity:   (|=)=
2

[4] Independence: {(|=)  ∈N} independent process,
[5] t-invariance: θ:= (0 1 

2) are constant over 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∈N.

Statistical parametrizations of (0 1 
2)?
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Question 2-(25 points)

(a)-(5 points) State the Neyman-Pearson (N-P) lemma, and explain why invoking

this lemma in the context of the simple Bernoulli model,  v BerIID( (1−)) ∈N
to derive an optimal test for the simple vs. hypotheses:

0: =0 vs. 1: =1 1  0 (4)

constitutes a blatant abuse of the original lemma. Explain how the result of the N-P

lemma can be extend to more realistic cases including the simple Bernoulli model

with ∈(0 1).
(b)-(3 points) Explain how you would reformulate the null (0) and alternative (1)

hypotheses in (4) to accord with the archetypal N-P formulation to properly frame

the N-P hypotheses to avoid fallacious results.

(c)-(8 points) Define and explain the concepts of the type I () and type II () error

probabilities and the power of a test. Explain why the traditional choice of =05

could easily give rise to the small  (sample size) or large  problems because of the

in-built trade-off between  and . Are there any ways to address the small and large

 problems in practice?

(d)-(5 points) Define and explain the following properties of N-P tests: (i) Uniformly

Most Powerful test, (ii) Unbiased test, and (iii) Consistent test.

(e)-(4 points) Discuss the notion of statistical adequacy and explain what is likely to

go wrong when any of the model assumptions are invalid for the data in question.
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Question 3

Consider a housing market analysis with some “treated” homes (e.g. located in a high-risk flood area) and
“control homes.”

Assume the true population models for a treated and control home i with sale prices of y1i (if treated) and
y0i (if untreated), respectively, are given as follows:

y1i = µ (xi,β) + γ + ϵi

y0i = µ (xi,β) + ϵi,
(1)

where µ (.) is some function of observed home and neighborhood characteristics xi and corresponding pa-
rameters β, γ is the treatment effect, and ϵi is an error term capturing additional unobservables that affect
home prices, with E (ϵi|xi) = 0.

As discussed in class, a basic Average Treatment Effect on the Treated (ATT) under 1 : M matching can
be obtained by paring each treated observation with M matched control observations to learn about the
treatment effect. Individual differences are then averaged to yield a sample-level estimate for the sought
treatment effect γ. Formally:

γ̂ =
1

n1

n1∑
i=1

(y1i − ŷ0i) , with

ŷ0i =
1
M

∑
j∈Li,M

y0j ,
(2)

where n1 denotes the total number of treated observations, ŷi0 is the estimated counterfactual sale price
for treated observation i, Li,M is the set of M controls that were matched to treated observation i, and y0j
is the observed sale price of control observation j.

Part (a)
First assume 1:1 matching, i.e. M = 1, such that ŷ0i = y0j , the price of the single matched control. Let

the finite sample bias of the basic matching estimator be given as B (γ̂B) = E
(

1
n1

∑n1
i=1 (y0i − ŷi0)

)
.

1. Express this bias as a function of the population model in (1), and show formally the condition under
which it goes to zero.

2. Using intuition, how likely is this condition to hold as (i) the dimension of x increases, and / or (ii) the
number of continuous variables in x increases?

Part (b)
Continuing with 1:1 matching, now consider an adjusted matching estimator where the estimated coun-
terfactual takes the following form:

ŷ0i = y0j + µ̂ (xi,β)− µ̂ (xj ,β) , (3)

where µ̂ (.) is an estimate of µ (.), using for example a linear or nonparametric regression model. Show
that in this case there are two alternative conditions for the bias of γ̂ to vanish (i.e. the bias goes to zero
if either of them holds).

Part (c)

Now consider the case of matching with multiple controls, i.e. M > 1, with counterfactual ŷ0i =
1
M

∑
j∈Li,M

y0j for the basic case, and ŷ0i = µ̂ (xi,β) +
1
M

∑
j∈Li,M

(y0j − µ̂ (xj ,β)) for the adjusted case.

Show formally that the results from parts (a) and (b) hold for this situation as well.



Question 4

Consider the Poisson model for a random integer variate y with parameter λ, given as

p (y|λ) = λyexp(−λ)

y!
, with

E (y|λ) = V (y|λ) = λ, λ > 0, y ∈ {0, 1, 2, 3, ....}
(1)

Part (a)
Now consider a sample of n observations from this distribution, with each observation generically
labeled yi, i = 1 . . . n.

1. Write down the log-likelihood function for the full sample (call it L (λ)).
2. Derive the sample gradient g (λ) and solve for the Maximum Likelihood Estimator λ̂.
3. Derive the sample Hessian H (λ) and show that the MLE solution is indeed a maximum.
4. Derive the information matrix I (λ).
5. Show that the score identity holds (Ey (g (.)) = 0)
6. Show that the information matrix identity holds (Vy (g (λ)) = I (λ))

Part (b)
Now consider the Bayesian approach to learning about λ.

Suppose you stipulate a gamma prior density for λ with shape parameter a and inverse scale
(“rate”) parameter b, given as

p (λ) = g (a, b) =
ba

Γ (a)
λ(a−1)exp (−bλ) , with

E (λ) =
a

b
, V (λ) =

a

b2
, λ, a, b > 0,

(2)

1. Write down the joint distribution for the sample data (in un-logged form). Call it p (y|λ).
2. Show that the posterior distribution of λ, given your collected data from the Poisson, is also a

gamma. Show the form of the posterior shape and rate parameters (you can call them a∗ and
b∗).

Part (c)
Show that the posterior expectation can be written as a weighted average of the prior expectation
and the MLE solution. What happens to this posterior expectation as n → ∞?
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