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Question 1 (20 minutes)

1. (a) State and explain the Gauss-Markov theorem in the context of the Linear

Regression (LR) model, assuming that
P

=1(−)2 6=0 and some of the probabilistic
assumptions in table 1 hold.

Table 1: Traditional Linear Regression model
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(b) Compare and contrast the specification in table 1 with that of table 2 in terms

of

(i) their assumptions (1)-(4) vs. [1]-[5] and

(ii) the difficulty in assessing their validity using a preliminary data analysis.

(iii) Explain why the additional assumption in traditional textbook econometrics:

(5) the LR model in Table 1 includes all the relevant explanatory variables (),

cannot be a statistical assumption.

Table 2: Normal, Linear Regression Model
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2
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[5] t-invariance: θ:= (0 1 
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(c) (i) Explain why the formulae for the OLS estimators of (0 1) coincide with

those of the Maximum Likelihood (ML) estimators.

(ii) Despite that, "the OLS [under (2)-(4)] and ML[under [1]—[5]] estimators of

(0 1) have different finite sampling distributions and optimal finite sample prop-

erties". Explain.

(d) Discuss the limitations of the Gauss-Markov theorem for inference purposes and

explain why its results are not informative enough to test the hypotheses: 0: 1=0

vs. 1: 1 6=0.
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Question 2: Weighted Regression (20 points)

Consider a linear regression model where every observation i = 1 . . . n receives a known weight√
wi, leading to the following model at the individual level:

√
wiyi =

√
wix

′
iβ +

√
wiϵi, with

ϵi ∼ n
(
0, σ2

) (1)

As usual, xi comprises a set of k explanatory variables, β is the corresponding vector of coefficients,
and the unweighted error term follows the typical i.i.d. normal density with zero mean and common
variance σ2.

Let W1/2 be an n by n diagonal matrix with the individual weights on the diagonal, and W =
W1/2 ∗W1/2 the corresponding diagonal matrix with the squared weights on the diagonal. To be
perfectly clear:

W1/2 =


√
w1 0 . . . 0
0

√
w2 . . . 0

...
...

. . .
...

0 . . . 0
√
wn

 W =


w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 . . . 0 wn

 (2)

The full-sample model in weighted form can then be written as:

W1/2y = W1/2Xβ +W1/2ϵ, or

ỹ = X̃β + ϵ̃
(3)

where y is the n by 1 vector of outcomes, X is the full n by k matrix of explanatory variables, and
ϵ is the n by 1 vector of error terms.

It naturally follows that
y = Xβ + ϵ (4)

Part (a), 9 points

1. Derive the variance-covariance matrix for the weighted error vector ϵ̃. How, if at all, does it
deviate from the CLRM assumptions?

2. Using the OLS formula on the transformed data (second line in (3)), derive the least squares
estimator b̃, and show it in terms of y, X, and W.

3. Derive the expectation and variance-covariance matrix for this estimator, given X.

4. Show that the variance of the estimator reduces to the standard OLS variance if every obser-
vation receives an equal weight of 1.
What would be the consequences for inference if the weighted model is the true model, but
the analyst uses the standard expression for the variance of the OLS estimator?

1



Part (b), 6 points

1. Consider the vector of predicted weighted outcomes, ˆ̃y = W1/2ŷ = X̃b̃. Solve for the
unweighted predictions ŷ in terms of y, X, and W.

2. Consider the unweighted residuals e = y − ŷ = M̃y. Solve for M̃ in terms of y, X, and W.

3. Show that e = M̃ϵ.

Part (c), 5 points
Assume you are interested in the agricultural output of farm i in county c = 1 . . . C, given by

yic = x′
icβ + ϵic, with

ϵic ∼ n
(
0, σ2

) (5)

where yic is output, xic is a vector of farm characteristics, and the farm-specific regression error ϵic
has the typical CLRM properties.

Since you were unable to obtain information from some farms, you decide to instead estimate a
model of county-level average output, i.e.:

ȳc = x̄′
cγ + ϵ̄c, with

ȳc =
1
n

nc∑
i=1

yic, x̄c =
1
n

nc∑
i=1

xic, ϵ̄c =
1
n

nc∑
i=1

ϵic,
(6)

where n denotes the total number of counties, and nc captures the number of farms in county c.

1. Derive the variance of the averaged error ϵ̄c. How, if at all, does it deviate from the CLRM
assumptions?

2. Let ϵ be the n by 1 vector of averaged errors for the entire sample of counties. Derive the
variance-covariance matrix of ϵ (you can call it Ω).

3. Knowing Ω, what would be the most efficient estimator for γ (call it γ̂)? Show its form (you
do not need to derive it mathematically).
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Question 3: Bayesian problem (20 points)

Consider the Exponential model for a random variate y with scale parameter λ, given as

p (y|λ) = λ−1 exp
(
−λ−1y

)
with

E (y|λ) = λ, V (y|λ) = λ2, λ > 0
(1)

Part (a), 4 points
Now consider a sample of n observations from this distribution, with each observation generically
labeled yi, i = 1 . . . n.

Suppose you stipulate a inverse gamma prior density for λ with shape parameter ν0 and scale
parameter τ0, given as

p (λ) = ig (ν0, τ0) =
τν00

Γ (ν0)
λ−(ν0+1)exp

(
−τ0λ

−1
)
, with

E (λ) =
τ0

ν0 − 1
, V (λ) =

τ20
(ν0 − 1)2 (ν0 − 2)

, λ, ν0, τ0 > 0,

(2)

1. Write down the joint distribution for the sample data (in un-logged form). Call it p (y|λ).

2. Show that the posterior distribution of λ, given your collected data from the Exponential, is
also an inverse-gamma. Show the form of the posterior shape and scale parameters (you can
call them ν1 and τ1).

Part (b), 10 points

1. Derive the posterior expectation of λ.

2. Derive the MLE estimate for λ, call it λ̂. Also derive the standard error of λ̂.

3. Show that the posterior expectation can be written as a weighted average of the prior expec-
tation and the MLE estimate. What happens to this posterior expectation as n → ∞?

Part (c), 6 points
Assume you study the waiting time for patients at the Emergency Room (ER) of the local hospital.
Let yi be the waiting time by patient i, in minutes. In terms of prior information, assume you know
from other nearby hospitals that the average waiting time over the last 12 months was 10 minutes
for the typical patient.

Your own data shows that of 10 patients sampled over the course of one day, the sum of all wait
times was 160 minutes.

1. Setting ν0 = 3, find the prior scale parameter τ0 to set the prior expectation such that it
corresponds to the average waiting time at the other hospitals (given the relationship between
E (y|λ) and λ in (1)).

2. Solve for the the posterior expectation E (λ|y) as well as the posterior variance V (λ|y) and
posterior standard deviation, with precision to the third decimal.

3. Assume the hospital is prepared to add more staff to the ER room if the posterior expectation,
plus three standard deviations exceeds 25 minutes. What will you recommend to the hospital’s
administration?
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