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Question 1 (30 minutes)

(a) Consider the simple Normal model:

 v NIID( 2) =1 2   

with 2 is known; ‘NIID’ stands for ‘Normal, Independent and Identically Distributed’

with mean  and variance 2

(1) The sampling distribution of =
1


P

=1 is traditionally stated as:

 v N( 
2


)

Explain why this claim makes no sense as it stands since it’s not obvious why

()= and  ()=
2




(2) Using your answer in (i) state the sampling distributions of the test statistic

(X)=
√
(−0)


under both the hypotheses:

0:  ≤ 0 vs. 1:   0 (1)

(b)-(1) Using your answer in (a) (i)-(ii) state the sampling distribution of the pivot

(X;)=
√
(−∗)


, where ∗ denotes the ‘true’ value of  whatever that happens to

be.

(2) Using your answer to (b)(i) construct an (1−) Confidence Interval (CI) for
 and discuss its optimality.

(c)-(1) Using your answer in (a)-(ii) state the optimal Neyman-Pearson (N-P) test

in terms of (X) and explain what ‘optimal’ means in this case.

(2) Define and explain briefly the concepts of (i) type I error probability, (ii) power

of the test, (iii) the p-value, and (iv) compare and contrast (i) with (iii).

(d) State the fallacies of acceptance and rejection and explain why the accept/reject

rules and the p-value are vulnerable to these fallacies when they are interpreted as

providing evidence for or against 0.and 1
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Question 2: Regression with individual-specific intercept (20 points)

Consider a sample of i = 1 . . . N individuals, where each individual contributes t = 1 . . . T obser-
vations. Each individual’s set of T observations is called a panel. Assume the data are stacked by
panels, such that the first T observations come from individual 1, the next T observations come
from individual 2, and so on. Let the full sample size be labeled as n, with n = N ∗ T .

At the single-observation level, the true model is given as:

yit = ci + x′
itβ + ϵit, with

ϵit ∼ n
(
0, σ2

) (1)

As is clear from (1), each individual has his/her own intercept term ci, which is fixed but unknown.

For the following, let iT be a vector of ones of length T, in be a vector of ones of length n, IT the
identity matrix of dimension T , In the identity matrix of dimension n, ϵi =

[
ϵi1 ϵi2 . . . ϵiT

]′
the panel-specific vector of error terms, and ϵ =

[
ϵ′1 ϵ′2 . . . ϵ′N

]′
the full-sample vector of error

terms.

Part (a), 9 points

1. Assume the analyst erroneously estimates a generic model with a typical single-valued inter-
cept term, i.e.

yit = α+ x′
itβ + ωit (2)

Show the explicit form of ωit and derive it’s expectation and variance.

2. Let the model at the panel level for person i be written as:

yi = iT ∗ α+Xiβ + ωi with

yi =
[
yi1 yi2 . . . yiT

]′
,

Xi =


x′
i1

x′
i2
...

x′
iT


(3)

Show the explicit form of ωi and derive it’s expectation and variance.

3. Let the model at the full-sample level be written as:

y = in ∗ α+Xβ + ω with

y =
[
y′
1 y′

2 . . . y′
T

]′
,

X =


X1

X2
...

XT


(4)

Show the explicit form of ω and derive it’s expectation and variance.
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Part (b), 6 points
Using partitioned regression based on the wrong / naive model in (2), show that the OLS estimate
of β - call it b - is biased.

Part (c), 5 points
Now assume the true model is given as:

yit = ci + x′
itβ + ϵit, with

ϵit ∼ n
(
0, σ2

)
and

ci ∼ n
(
0, σ2

c

) (5)

In words, the individual-specific intercepts are now coming from a common normal distribution
with mean zero and variance σ2

c , where σ2
c ̸= σ2. You can assume that the two stochastic compo-

nents (ci and ϵit) are uncorrelated across all observations.

1. Assume again the analyst uses the flawed model in (2). Expressing the model again at the
observation, panel, and full-sample level as in equations (2) through (4), show the explicit
forms of ωit, ωi, and ω, as well as their expectation and variance.

2. In addition to biased coefficients, which other problem presents itself in this case compared
to a well-behaved CLRM?
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Question 3: Bayesian problem (20 points)

Consider the Exponential model for a random variate y with parameter λ (also called the “hazard
rate”), given as

p (y|λ) = λ exp (−λy) with

E (y|λ) = λ−1, V (y|λ) = λ−2, λ > 0
(1)

Part (a), 4 points
Now consider a sample of n observations from this distribution, with each observation generically
labeled yi, i = 1 . . . n.

Suppose you stipulate a gamma prior density for λ with shape parameter a and inverse scale
(“rate”) parameter b, given as

p (λ) = g (a, b) =
ba

Γ (a)
λ(a−1)exp (−bλ) , with

E (λ) =
a

b
, V (λ) =

a

b2
, λ, a, b > 0,

(2)

1. Write down the joint distribution for the sample data (in un-logged form). Call it p (y|λ).

2. Show that the posterior distribution of λ, given your collected data from the Exponential, is
also a gamma. Show the form of the posterior shape and rate parameters (you can call them
a∗ and b∗).

Part (b), 10 points

1. Derive the posterior expectation of λ.

2. Derive the MLE estimate for λ, call it λ̂.

3. Show that the posterior expectation can be written as a weighted average of the prior expec-
tation and the MLE estimate. What happens to this posterior expectation as n → ∞?

Part (c), 6 points
Assume you study the waiting time by motorists at an urban toll booth (where you pay a fee to use
the highway). Let yi be the waiting time by vehicle i, in minutes. In terms of prior information,
assume you know from other nearby toll booths at similar highways in terms of traffic volume that
the average waiting time over the last 12 months was 1 minute.

Your own data shows that of 1000 vehicles sampled over the last week, the sum of all wait times
was 800 minutes.

1. Setting b = 10, find the prior shape parameter a to set the prior expectation such that it
corresponds to the inverse of average waiting time from the other toll booths (given the
relationship between E (y|λ) and λ in (1).
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2. Solve for the MLE estimate λ̂, and the posterior expectation E (λ|y), with precision to the
third decimal. Why are they different? (Hint: You can use your results from part (b) for
guidance). Solve for the corresponding expected waiting times for MLE and Bayes (use again
the relationship in (1)).

3. Now assume your sample was much smaller, say 10 vehicles with a total waiting time of 8
minutes. Solve again for λ̂ and E (λ|y), with precision to 3 decimals. How do they compare
to the larger-sample results? Has the difference between them increased? If so, why? Solve
for the corresponding expected waiting times for MLE and Bayes (use again the relationship
in (1)). How do they compare to the waiting times based on the larger sample?
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