
Qualifying Exam: Econometrics, June 2024
Answer all four questions

QUESTION 1 (25 points)

(A)-(8 points) State and explain the Gauss-Markov theorem in the context of the

Linear Regressionmodel, under the assumptions (2)-(4) (table 1) and
P

=1(−)2 6=0.

Table 1: Traditional Linear Regression model

 = 0 + 1 +  =1 2  

(1) (|=) v N( )
(2)  (|=) = 0

(3)   (|=) = 2

(4)  (|=)=0 

⎫⎪⎪⎬⎪⎪⎭  =1 2  

(B)-(5 points) Compare and contrast the specification in table 1 with that of table

2 in terms of:

(i) relating their assumptions (1)-(4) vs. [1]-[5] and

(ii) the possibility of assessing their validity using preliminary data analysis using

graphical techniques.

Table 2: Normal, Linear Regression Model

Statistical GM:  = 0 + 1 +  ∈N:=(1 2   )
[1] Normality: (|=)vN( ) (|;θ)=exp− (−0−1)2

22


√
2

[2] Linearity:  (|=))=0 + 1

[3] Homoskedasticity:   (|=) = 2

[4] Independence: {(|=)  ∈N} independent process,
[5] t-invariance: θ:= (0 1 

2) are constant over 

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∈N.

0= [()−1()]∈R 1=()

 ()
∈R 2=(  ()− [()]2

 ()
)∈R+

(C)-(7 points) (i) Explain why the formulae for the OLS estimators of (0 1) coin-

cide with those of the Maximum Likelihood (ML) estimators.

(ii) Despite that, "the OLS [under (1)-(4)] and ML[under [1]—[5]] estimators of

(0 1) have different finite sampling distributions and optimal finite sample prop-

erties". Explain.

(D)-(5 points) Discuss the limitations of the Gauss-Markov theorem for inference

purposes and explain why its results are not informative enough to provide a proper

frequentist test for the hypotheses:

0: 1=0 vs. 1: 1 6=0.

1

Will Bebout

Will Bebout

Will Bebout
July/August



QUESTION 2 (25 points)

(A)-(10 points) Consider the simple Normal model (one parameter):

 v NIID( 2), =1 2    (1)

with 2 is known, and ‘NIID’ stands for ‘Normal, Independent and Identically Dis-

tributed’.

The sampling distribution of
√
(−)


 where =

1


P

=1 is often stated in

traditional econometric textbooks by:

(X)=
√
(−)


v N (0 1) (2)

(i) Explain why this is misleading by explicating what ensures [(X)]=0 and

 [(X)]=1 for the sampling distribution in (2), and relate your answer to the

reasoning underlying estimation and hypothesis testing for the hypotheses:

0:  ≤ 0 vs. 1:   0 (3)

(ii) Using your answer in (A)-(i) construct a (1−) two-sided Confidence Interval
(CI) for 

(iii) Explain why the (1−) probability cannot be assigned to an observed CI.
(B)-(10 points)

(i) Using your answer in (A)-(i) construct an optimal  significance level Neyman-

Pearson (N-P) test based on (X) and explain what ‘optimal’ means in terms of its

relevant properties.

(ii) Using your answer in (A)-(i) define and explain the concepts of (a) type I error

probability, (b) type II error probability, (c) power of the test and (d) the p-value,

and (e) compare and contrast (a) and (d).

(C)-(5 points) State the fallacies of acceptance and rejection and explain why

the accept/reject rules and the p-value are vulnerable to these fallacies when they

are interpreted as providing evidence for or against a hypothesis irrespective of the

significance level  and the sample size .
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Question 3

Consider a housing market analysis with some “treated” homes (e.g. located in a high-risk flood area) and
“control homes.”

Assume the true population models for a treated and control home i with sale prices of y1i (if treated) and
y0i (if untreated), respectively, are given as follows:

y1i = µ (xi,β) + γ + νi + ϵi

y0i = µ (xi,β) + νi + ϵi,
(1)

where µ (.) is some function of observed home and neighborhood characteristics xi and corresponding pa-
rameters β, γ is the treatment effect, νi is a spatial fixed effect (e.g. school zone), and ϵi is an error term
capturing additional unobservables that affect home prices, with ϵi ∼ n

(
0, σ2

)
.

As discussed in class, a generic Average Treatment Effect on the Treated (ATT) under 1:1 matching can
be obtained by paring each treated observation with a single matched control to learn about the treatment
effect. Individual differences are then averaged to yield a sample-level estimate for the sought treatment
effect γ. Formally:

γ̂ =
1

n1

n1∑
i=1

(y1i − ŷ0i) (2)

where the summation is over all treated observations, and ŷi0 is the estimated counterfactual sale price for
treated observation i.

Part (a) 4 points
Letting control observations be indexed by j, what will be the estimate of ŷi0 in this case (1:1 matching)?

Part (b) 16 points

1. Show the finite sample bias of γ̂B, i.e. E
(

1
n1

∑n1
i=1 (y0i − ŷi0)

)
by substituting the population model in

(1) for y0i and the estimate of ŷi0 you found in the previous question, respectively.
2. Describe the general / sufficient condition(s) that must hold for this bias to vanish.
3. How could you assure that νi = νj for all treated observations?
4. Assume now that that xi ̸= xj and νi ̸= νj for a specific matched pair. Could the bias for this specific

pair still vanish? If so, how? How likely is this condition going to hold for the entire sample of treated?



Question 4

Consider the Bayesian estimation of a CLRM without explanatory variables (i.e. just a constant
term). At the observation level this model can be written as

yi = µ+ ϵi

ϵi ∼ n
(
0, σ2

) (1)

Thus, the only parameters in this model are the population mean µ and variance σ2. Assume
throughout that σ2 is known.

You opt for a normal prior for µ, i.e.
µ ∼ n (µ0, V0) , (2)

where µ0 and V0 are the prior mean and variance, respectively. (Note that both are scalars, of
course).

Part (a) 5 points

1. Write down the regression model for the full sample of n observations.
2. Write down the likelihood function for the full sample (call it p

(
y|µ, σ2

)
).

Part (b) 5 points
Since σ2 is known, the conditional posterior of µ, p

(
µ|σ2,y

)
is the end-product for this analysis.

Recall that for a CLRM with covariates, the moments for the conditional posterior can be expressed
as

V1 =
(
V−1

0 + 1
σ2X

′X
)−1

µ1 = V1

(
V−1

0 µ0 +
1
σ2X

′y
) (3)

where µ1 and V1 are the conditional posterior mean and variance, respectively.

Working from these expressions, derive the conditional posterior variance of µ for your model (call
it V1). Show that it is always smaller than the prior variance V0 for any n, V0 > 0.

Part (c) 10 points

1. Derive the conditional posterior mean (call it µ1) and show that it can be written as a weighted
average of the prior mean and the sample mean ȳ, with the weights summing to one.

2. State the condition under which the sample mean will receive a larger weight than the prior
mean. Elaborate on the effect of the prior variance V0 and the sample size n on the relative
weight of the sample mean.
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